This paper describes the architectures of current and next-generation residential small-cell networks, and how these large networks are effectively provisioned and managed.ABSTRACT | In the last few years, small-cell technology has moved from the realm of academic research to large commercial networks with millions of deployed units. This paper discusses the challenges in deploying and maintaining a largescale residential small-cell network. The paper first discusses the need for residential small cells to provide ubiquitous coverage in homes located in poor coverage areas of the conventional macrocell, and then describes the architectures of current and next-generation residential small-cell networks, and how these large networks are effectively provisioned and managed. The paper is air interface agnostic and is based on the experience of the authors in commercial deployment of both UMTS and CDMA2000 femtocell networks.
To address the increasing data rate demands for future wireless networks, a dense deployment of base stations or access points is the most promising approach; however, doing so may cause high intercell interference (ICI). Numerous interference coordination (IC) approaches have been proposed to reduce ICI. Conducting 5G communication on millimeter wave (mmWave) bands is more complex because of its higher propagation losses and greater attenuation variance, all of which depend on environment change. Massive antenna arrays with beamforming techniques can be used to overcome high propagation loss, reduce interference, deliver performance gains of coordination without a high overhead, and deliver high network capacity with multiplex transmitters. The central challenge of a massive antenna array that uses beamforming techniques is coordinating the users and beams for each transmitter within a large network. To address this challenge, we propose a novel two-level beamforming coordination approach that partitions a large network into clusters. At the intracluster level, this approach performs intracluster coordination similar to the user selection algorithms in a multiuser multiple input and multiple output (MU-MIMO); doing this maximizes the utility function or minimizes the signal-to-interference-plus-noise ratio (SINR) function within a cluster. A dynamic time domain IC approach is employed at the intercluster level, collecting interference information for cluster-edge user equipment (UE) and allocating the UE dynamically among the clusters to reduce the intercluster interference for a switched-beam system (SBS). Simulation results show that the proposed two-level IC approach achieves a higher edge user performance or cell capacity than with the current uncoordinated/coordinated approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.