The mouse is one of the wonderful inventions of Human-Computer Interaction (HCI) technology. Currently, wireless mouse or a Bluetooth mouse still uses devices and is not free of devices completely since it uses a battery for power and a dongle to connect it to the PC. In the proposed AI virtual mouse system, this limitation can be overcome by employing webcam or a built-in camera for capturing of hand gestures and hand tip detection using computer vision. The algorithm used in the system makes use of the machine learning algorithm. Based on the hand gestures, the computer can be controlled virtually and can perform left click, right click, scrolling functions, and computer cursor function without the use of the physical mouse. The algorithm is based on deep learning for detecting the hands. Hence, the proposed system will avoid COVID-19 spread by eliminating the human intervention and dependency of devices to control the computer.
Using energy efficiency to increase the life and sustainability of wireless sensor networks (WSNs) for biomedical applications is still a challenge. Clustering has boosted energy productivity by allowing cluster heads to be categorized, but its implementation is still a challenge. Existing cluster head selection criteria start with determining acceptable cluster head locations. The cluster heads are picked from the nodes that are most closely connected with these places. This location-based paradigm incorporates challenges such as faster processing, less precise selection, and redundant node selection. The development of the sampling-based smart spider monkey optimization (SSMO) approach is addressed in this paper. If the sample population’s nodes are varied, network nodes are picked from among them. The problems with distributed nodes and cluster heads are no longer a concern. This article shows how to use an SSMO and smart CH selection to increase the lifetime and stability of WSNs. The goal of this study is to look at how cluster heads are chosen using standard SMO and sampling-based SMO for biomed applications. Low-energy adaptive clustering hierarchy centralized (LEACH-C), particle swarm optimization clustering protocol (PSO-C), and SSMO improved routing protocol measurements are compared to those obtained in homogeneous and heterogeneous settings using equivalent methodologies. In these implementations, SSMO boosts network longevity and stability periods by an estimated 12.22%, 6.92%, 32.652%, and 1.22%.
Recently, surface defects detection in metals plays a significant role in computer vision applications. An efficient and accurate defect detection approach is implemented in this paper. The defect detection on metal surface is achieved by iterative thresholding technique on metal surface images. The defect region such as crack and shrinkage of the metal surface image is detected by binarization using iterative thresholding technique. The experimental results are carried out by using real time metal surface images and satisfactory performance is achieved by the proposed defect detection technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.