Human tracking is the process of locating moving objects (human) over time using camera. It has wide number of applications like security and surveillance, traffic control, video editing, medical imaging etc. It can be a time consuming process due to the large amount of data contained in video. The objective of human tracking is to associate target objects in consecutive video frames. To initiate human tracking an algorithm analyzes video frames and outputs the movement of targets between the frames. There are a number of algorithms each having its own strengths and weakness. Considering the intended use is important when choosing the algorithm. This paper proposes particle filter based methods for human tracking, addressing two major issues such as variations of distance measurement (similarity measure) and Re-Sampling algorithms.
Disease detection in plants is one of the essential steps in the field of agriculture to improve the quality and yield of crops. Applications of image processing play a major role in the early detection of diseases and also in terms of accuracy and time consumption. In many plant health monitoring systems, Fourier and wavelet transform is applied for feature extraction from plant images and then they are classified using different classifiers. In this study, tomato leaf images are collected from the PlantVillage database, images are preprocessed to improve the contrast, and then image segmentation is performed using the k-means clustering technique. Texture features are extracted from the region of interest using Discrete Wavelet Transforms (DWT). Fourteen image features obtained from Daubechies (db3), Symlet (sym3), and biorthogonal (Bior 3.3, Bior 3.5, Bior 3.7) wavelets. These features are used to classify the images as healthy and unhealthy with the help of the Support Vector Machine (SVM) classifier. Performance of the system is measured in terms of Sensitivity, Specificity, and Accuracy. The proposed system classifies the images with a sensitivity of 92%, specificity of 84%, and accuracy of 88%.
This paper presents, a simple and efficient wavelet approach for computing the surface integrals over irregular or curved dom ain, the limit of the integrals are nonlinear function are transformed to standard two square by using finite element basis function, Haar wavelet based integration technique is applied to evaluation of surface integral over curved domain, the computational efficiency of the method is illustrated with several numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.