BAG-1 is an anti-apoptotic protein that is frequently deregulated in a variety of malignancies including colorectal cancer. There are three isoforms: BAG-1L is located in the nucleus, BAG-1M and BAG-1S are located both in the nucleus and the cytoplasm. In colon cancer, the expression of nuclear BAG-1 is associated with poorer prognosis and is potentially a useful predictive factor for distant metastasis. However, the function of BAG-1 in colonic epithelial cells has not been studied. Having previously shown a predominant nuclear localisation of BAG-1 in adenoma-derived cell lines, we wanted to determine the function of nuclear BAG-1 in these non-tumourigenic cells, to identify whether nuclear BAG-1 was implicated in tumour progression in the colon. In the current report we established that nuclear BAG-1 inhibits apoptosis in a colorectal adenoma-derived cell line. We demonstrate that apoptosis induced by gamma-radiation or the vitamin D analogue EB1089 in the non-tumourigenic human colorectal adenoma-derived S/RG/C2 cell line, was preceded by a decrease in nuclear and an increase in cytoplasmic BAG-1 expression. This change in subcellular localisation of BAG-1 was due to the redistribution of the BAG-1M isoform. In addition, we have shown that the maintenance of high nuclear BAG-1 through enforced expression of the nuclear localised BAG-1L isoform enhanced cellular survival after gamma-radiation or exposure to EB1089. Furthermore the expression of cytoplasmic BAG-1S isoform fused with a nuclear localisation signal protected against gamma-radiation induced apoptosis. This demonstrates that nuclear localisation of the BAG-1 protein confers a survival advantage in colorectal adenoma-derived cells and that nuclear BAG-1 could potentially be an important survival factor in colorectal carcinogenesis.
Although the retinoblastoma susceptibility gene RB1 is inactivated in a wide variety of human cancers, the retinoblastoma protein (Rb) has been shown to be overexpressed in colon cancers, which is linked to the anti-apoptotic function of the protein. However, the mechanisms by which Rb regulates apoptosis are yet to be fully elucidated. We have established that Rb interacts with the anti-apoptotic BAG-1 (Bcl-2 associated athanogene-1) protein, and that a decrease in nuclear localization of BAG-1 is detectable when the interaction between Rb and BAG-1 is disrupted by expression of the E7 viral oncoprotein. Interestingly, although reported as deregulated in colorectal cancers, we have found that BAG-1 expression is also altered in small adenomas, where its localization was found to be predominantly nuclear. In addition, we have established that maintenance of high nuclear BAG-1 in vitro increases the resistance of adenoma-derived cells to gamma-radiation-induced apoptosis. Our work suggests a novel function for Rb, involving modulation of the subcellular localization of BAG-1. We have found predominant nuclear BAG-1 localization in small adenomas, and suggest that BAG-1 may promote colorectal tumour cell survival by making colonic epithelial cells less sensitive to DNA damage.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.