Although expression of the anti-apoptotic protein Bcl-2-associated athanogene-1 (BAG-1) has been reported as up-regulated in a number of malignancies, we show for the first time that BAG-1 is over-expressed in medium/large-sized colorectal adenomas and carcinomas compared with normal epithelium. To investigate whether expression of BAG-1 is important for colorectal tumour cell survival, microarray analysis was carried out on the HCT116 colorectal carcinoma cell line following transfection with BAG-1 small interfering RNA (siRNA). Analysis identified altered expression of a subset of potential nuclear factor-kappaB (NF-kappaB)-regulated genes. Furthermore, knock down of BAG-1 was shown to inhibit NF-kappaB transcriptional activity. Inhibition of NF-kappaB activity using BAG-1 siRNA or the NF-kappaB inhibitor BAY-117082 suppressed HCT116 cell yield and induced apoptosis; combined treatment had no additive effect, suggesting that the decrease in cell yield associated with knock down of BAG-1 expression is mediated via inhibition of NF-kappaB. Of clinical relevance, BAG-1 siRNA sensitized colorectal carcinoma cells to apoptosis induced by potential therapeutic agent TRAIL as well as tumour necrosis factor-alpha, both inducers of NF-kappaB activity. In summary, knock down of BAG-1 leads to inhibition of NF-kappaB, identifying BAG-1 as a novel regulator of NF-kappaB. It is proposed that, by inhibiting NF-kappaB, suppression of BAG-1 could represent a novel strategy to impede colorectal cancer cell survival and as an adjuvant increase sensitivity to current therapeutic regimes.
Glaucoma is one of the leading causes of blindness, and there is an ongoing need for new therapies. Recent studies indicate that cell transplantation using Müller glia may be beneficial, but there is a need for novel sources of cells to provide therapeutic benefit. In this study, we have isolated Müller glia from retinal organoids formed by human induced pluripotent stem cells (hiPSCs) in vitro and have shown their ability to partially restore visual function in rats depleted of retinal ganglion cells by NMDA. Based on the present results, we suggest that Müller glia derived from retinal organoids formed by hiPSC may provide an attractive source of cells for human retinal therapies, to prevent and treat vision loss caused by retinal degenerative conditions. Stem Cells Translational Medicine 2019;8:775&784
Although the retinoblastoma susceptibility gene RB1 is inactivated in a wide variety of human cancers, the retinoblastoma protein (Rb) has been shown to be overexpressed in colon cancers, which is linked to the anti-apoptotic function of the protein. However, the mechanisms by which Rb regulates apoptosis are yet to be fully elucidated. We have established that Rb interacts with the anti-apoptotic BAG-1 (Bcl-2 associated athanogene-1) protein, and that a decrease in nuclear localization of BAG-1 is detectable when the interaction between Rb and BAG-1 is disrupted by expression of the E7 viral oncoprotein. Interestingly, although reported as deregulated in colorectal cancers, we have found that BAG-1 expression is also altered in small adenomas, where its localization was found to be predominantly nuclear. In addition, we have established that maintenance of high nuclear BAG-1 in vitro increases the resistance of adenoma-derived cells to gamma-radiation-induced apoptosis. Our work suggests a novel function for Rb, involving modulation of the subcellular localization of BAG-1. We have found predominant nuclear BAG-1 localization in small adenomas, and suggest that BAG-1 may promote colorectal tumour cell survival by making colonic epithelial cells less sensitive to DNA damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.