Mutations in homeotic genes disturb the spatial and temporal patterns of development, often leading to the appearance of tissues in abnormal locations. Many homeotic genes, involved in flower development, code for proteins with a highly conserved domain called the MADS box, which acts as a sequence-specific DNA binding protein. Two floral development mutants were isolated from a fast neutron irradiated M2 barley population. The phenotypes are multiovary, that is, stamens replaced with carpels, designated mo7a, and stamens replaced with carpels and lodicules converted to leaflike structures, designated mo6b. These phenotypes resemble the Arabidopsis mutants APETALA3 (AP3) and PISTILATA (PI). The mo6b and mo7a mutants were mapped to the centromeric region of chromosome 1 (7H) and to the telomeric region of chromosome 3 (3H), respectively.
Many characterized plant disease resistance genes encode proteins which have conserved motifs such as the nucleotide binding site. Conservation extends across different species, therefore resistance genes from one species can be used to isolate homologous regions from another by employing DNA sequences encoding conserved protein motifs as probes. Here we report the isolation and characterization of a barley ( Hordeum vulgare L.) resistance gene analog family consisting of nine members homologous to the maize rust resistance gene Rp1-D. Five barley Rp1-D homologues are clustered within approximately 400 kb on chromosome 1(7H), near, but not co-segregating with, the barley stem rust resistance gene Rpg1; while others are localized on chromosomes 3(3H), 5(1H), 6(6H) and 7(5H). Analyses of predicted amino-acid sequences of the barley Rp1-D homologues and comparison with known plant disease resistance genes are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.