The presented work uses a discrete strategy of beam profile compensation to evaluate the local internal quantum yield (iQY) of upconverting nanoparticles (UCNPs) at the pixel level of the beam...
The quantum yield (QY) evaluation of upconverting nanoparticles (UCNPs) is an essential step in the characterisation of such materials. The QY of UCNPs is governed by competing mechanisms of populating...
Non-linear materials such as upconverting nanoparticles (UCNPs) are emerging technology with fast-growing applications in various fields. The power density dependence of the emission quantum yield (QY) of these non-linear materials makes them challenging to characterize using currently available commercial QY systems. We propose a multimodal system to measure QY over a wide dynamic range (1:104), which takes into account and compensates for various distorting parameters (scattering, beam profile, inner filter effect and bandwidth of emission lines). For this, a beam shaping approach enabling speckle free beam profiles of two different sizes (530 µm or 106 µm) was employed. This provides low noise high-resolution QY curves. In particular, at low power densities, a signal-to-noise ratio of >50 was found. A Tm-based core-shell UCNP with excitation at 976 nm and emission at 804 nm was investigated with the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.