The presented work uses a discrete strategy of beam profile compensation to evaluate the local internal quantum yield (iQY) of upconverting nanoparticles (UCNPs) at the pixel level of the beam...
The design of mechanically clutched cranial perforators, used in craniotomy procedures, limits their performance under certain clinical conditions and can, in some cases, impose the risk of severe brain injury on patients undergoing the procedure. An additional safety mechanism could help in mitigating these risks. In this work, we examine the use of diffuse reflectance spectroscopy as a potential fallback mechanism for near real-time detection of the bone-brain boundary. Monte Carlo simulation of a two layer model with optical properties of bone and brain at 530 and 850 nm resulted in a detectable change in diffuse reflectance signal when approaching the boundary. The simulated results were used to guide the development of an experimental drill control system, which was tested on 10 sheep craniums and yielded 88.1% success rate in the detection of the approaching bone-brain boundary.
Optical properties of GaAs/InGaAs/GaAs nanopillars (NPs) grown on GaAs(111)B were investigated. Employment of a mask-etching technique allowed for an accurate control over the geometry of NP arrays in terms of both their diameter and separation. This work describes both the steady-state and time-resolved photoluminescence of these structures as a function of the ensemble geometry, composition of the insert, and various shell compounds. The effects of the NP geometry on a parasitic radiative recombination channel, originating from an overgrown lateral sidewall layer, are discussed. Optical characterization reveals a profound influence of the core-shell lattice mismatch on the carrier lifetime and emission quenching at room temperature. When the lattice-matching conditions are satisfied, an efficient emission from the NP arrays at room temperature and below the band-gap of silicon is observed, clearly highlighting their potential application as emitters in optical interconnects integrated with silicon platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.