ISBN: 978-1-4244-5309-2 - WOSInternational audienceThe elaboration of new and innovative systems such as MPSoC (Multiprocessor System on Chip) which are made up of multiple processors, memories and IPs lies on the designers to achieve a complex codesign work. Specific tools and methods are needed to cope with the increasing complexity of both algorithms and platforms. Our approach to design such systems is based on the usage of a high level of abstraction language called RVC CAL. This language is dataflow oriented and thus points out the concurrency and parallelism of algorithms. Moreover CAL is supported by the OpenDF simulator and by two code generators called CAL2C (software generator) and CAL2HDL (hardware generator). The MPEG expert group has recently elaborated the Reconfigurable Video Coding (RVC) standard which defines the RVC CAL language as reference for MPEG video decoder descriptions. This paper introduces the opportunities to design an innovative system involving hardware and software IPs, embedded processors and memories from a CAL model. Practical results on a FPGA are provided with a codesign solution of an MPEG4 Simple Profile (SP)
Abstract-The Dataflow Process Networks (DPN)Model of Computation (MoC) has been used in different ways to improve time-to-market for complex multipurpose systems. The development of such systems presents mainly two problems: (1) the manual creation of the multi-purpose specialized hardware infrastructures is quite error-prone and may take a lot of time for debugging; (2) the more hardware are the details to be handled the greater the effort required to define an optimized components library. This paper tackles both problems, leveraging on the combination of the DPN MoC with a coarse-grained reconfigurable approach to hardware design and on the exploitation of the DPN MoC for the synthesis of target-independent hardware codes. Combining two state of the art tools, namely the Multi-Dataflow Composer tool and the Open RVC-CAL Compiler, we propose a novel dataflow-based design flow that provide a considerable on-chip area saving targeting both FPGAs and ASICs.
International audienceH.264 AVC video compression standard achieves high compression rates at the cost of a high encoder complexity. The encoder performances are greatly linked to the motion estimation operation which requires high computation power and memory bandwidth. High definition context magnifies the difficulty of a real-time implementation. EPZS and HME are two well-known motion estimation algorithms. Both EPZS and HME are implemented in a DSP and their performances are compared in terms of both quality and complexity. Based on these results, a new algorithm called HDS for Hierarchical Diamond Search is proposed. HDS motion estimation is integrated in a AVC encoder to extract timings and resulting video qualities reached. A real-time DSP implementation of H.264 quarter-pixel accuracy motion estimation is proposed for SD and HD video format. Furthermore HDS characteristics make this algorithm well suited for H.264 SVC real-time encoding applications
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.