The MPEG Reconfigurable Video Coding working group is developing a new library-based process for building the reference codecs of future MPEG standards, which is based on dataflow and uses an actor language called CAL. The paper presents a code generator producing RTL targeting FPGAs for CAL, outlines its structure, and demonstrates its performance on an MPEG-4 Simple Profile decoder. The resulting implementation is smaller and faster than a comparable RTL reference design, and the second half of the paper discusses some of the reasons for this counter-intuitive result.
The MPEG Reconfigurable Video Coding (RVC) framework is a new standard under development by MPEG that aims at providing a unified high-level specification of current and future MPEG video coding technologies using dataflow models. In this framework, a decoder is built as a configuration of video coding modules taken from the standard MPEG toolbox library or proprietary libraries. The elements of the library are specified by a textual description that expresses the I/O behavior of each module and by a reference software written using a subset of the CAL Actor Language named RVC-CAL. A decoder configuration is written in an XML dialect by connecting a set of CAL modules. Code generators are fundamental supports that enable the direct transformation of a high level specification to efficient hardware and software implementations. This paper presents a synthesis tool that from a CAL dataflow program generates C code and an associated SystemC model. The generated code is validated against the original CAL description simulated using the Open Dataflow environment. Experimental results of the translation of two descriptions of an MPEG-4 Simple Profile decoder with different granularities are shown and discussed.
International audienceThe MPEG Reconfigurable Video Coding (RVC) framework is a new standard under development by MPEG that aims at providing a unified high-level specification of current MPEG video coding technologies. In this framework, a decoder is built as a configuration of video coding modules taken from the standard "MPEG toolbox library". The elements of the library are specified by a textual description that expresses the I/O behavior of each module and by a reference software written using the CAL Actor Language. A decoder configuration is written in an XML dialect by connecting a set of CAL modules. Code generators are fundamental supports that enable the direct transformation of a high level specification to efficient hardware and software implementations. This paper presents a synthesis tool that from a CAL dataflow program generates C code and an associated SystemC model. Experimental results of the RVC Expert's MPEG-4 Simple Profile decoder synthesis are reported. The generated code and the associated SystemC model are validated against the original CAL description which is simulated using the Open Dataflow environment
Embedded real-time applications in communication systems have significant timing constraints, thus requiring multiple computation units. Manually exploring the potential parallelism of an application deployed on multi-core architectures is greatly time-consuming. This paper presents an open source Eclipse-based framework which aims to facilitate the exploration and development processes in this context. The framework includes a generic graph editor (Graphiti), a graph transformation library (SDF4J) and an automatic mapper/scheduler tool with simulation and code generation capabilities (PREESM). The input of the framework is composed of a scenario description and two graphs, one graph describes an algorithm and the second graph describes an architecture. The rapid prototyping results of a 3GPP Long Term Evolution (LTE) algorithm on a multi-core digital signal processor illustrate both the features and the capabilities of this framework.
The MPEG Reconfigurable Video Coding working group is developing a new library-based process for building the reference codecs of future MPEG standards, which is based on dataflow and uses an actor language called Cal. The paper presents a code generator producing RTL targeting FPGAs for Cal, outlines its structure, and demonstrates its performance on an MPEG-4 Simple Profile decoder. The resulting implementation is smaller and faster than a comparable RTL reference design, and the second half of the paper discusses some of the reasons for this counter-intuitive result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.