Inhibierende Faktoren: Die Bildung von Biofilmen kann mithilfe eines Phenylgalactosyl‐Peptid‐Dendrimers (siehe Bild), das an das galactosespezifische Lectin LecA von P. aeruginosa bindet, unterdrückt werden. Die Multivalenz des Liganden ist entscheidend für die Inhibierung der Biofilmbildung, wobei der Linker zwischen Peptiddendrimer und Galactose zusätzliche Kontakte mit dem Lectin ermöglicht und somit ebenfalls die Wechselwirkung beeinflusst.
Predicting the nature and outcome of reactions using computational methods is a crucial tool to accelerate chemical research. The recent application of deep learningbased learned fingerprints to reaction classification and reaction yield prediction has shown an impressive increase in performance compared to previous methods such as DFT-and structure-based fingerprints. However, learned fingerprints require large training data sets, are inherently biased, and are based on complex deep learning architectures. Here we present the differential reaction fingerprint DRFP. The DRFP algorithm takes a reaction SMILES as an input and creates a binary fingerprint based on the symmetric difference of two sets containing the circular molecular n-grams generated from the molecules listed left and right from the reaction arrow, respectively, without the need for distinguishing between reactants and reagents. We show that DRFP outperforms DFT-based fingerprints in reaction yield prediction and other structurebased fingerprints in reaction classification, reaching the performance of state-of-the-art learned fingerprints in both tasks while being data-independent.
Wie Enzyme katalysieren drei Dendrimere aus einer Familie synthetischer Peptid‐Dendrimere 1 die Hydrolyse des 7‐Hydroxy‐1‐methylchinonesters 2. Die Synthese dieser Katalysatoren erfolgte ausgehend von symmetrisch verzweigten Diaminosäuren (B) durch Umsetzung mit drei variierenden Aminosäuren (A1, A2, A3=His, Asp, Ser) und Dimerisierung zu einem Disulfid. Unter Ausschöpfung aller Kombinationsmöglichkeiten der drei verwendeten Aminosäuren Aspartat, Histidin und Serin erhält man Zugang zu einer Familie von 21 Peptid‐Dendrimeren.
Oligosaccharyltransferase (OST) is the central enzyme of N-linked protein glycosylation. It catalyzes the transfer of a pre-assembled glycan, GlcNAc2Man9Glc3, from a dolichyl-pyrophosphate donor to acceptor sites in secretory proteins in the lumen of the endoplasmic reticulum. Precise recognition of the fully assembled glycan by OST is essential for the subsequent quality control steps of glycoprotein biosynthesis. However, the molecular basis of the OST-donor glycan interaction is unknown. Here we present cryo-EM structures of S. cerevisiae OST in distinct functional states. Our findings reveal that the terminal glucoses (Glc3) of a chemo-enzymatically generated donor glycan analog bind to a pocket formed by the non-catalytic subunits WBP1 and OST2. We further find that binding either donor or acceptor substrate leads to distinct primed states of OST, where subsequent binding of the other substrate triggers conformational changes required for catalysis. This alternate priming allows OST to efficiently process closely spaced N-glycosylation sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.