Halogen bonding triggers activity: Increasing binding affinity was observed for a series of covalent human Cathepsin L inhibitors by exchanging an aryl ring H atom with Cl, Br, and I, which undergo halogen bonding with the CO group of Gly61 in the S3 pocket of the enzyme. Fluorine, in contrast, strongly avoids halogen bonding (see scheme). The strong distance and angle dependence of halogen bonding was confirmed for biological systems.
In two series of small-molecule ligands, one inhibiting human cathepsin L (hcatL) and the other MEK1 kinase, biological affinities were found to strongly increase when an aryl ring of the inhibitors is substituted with the larger halogens Cl, Br, and I, but to decrease upon F substitution. X-ray co-crystal structure analyses revealed that the higher halides engage in halogen bonding (XB) with a backbone C=O in the S3 pocket of hcatL and in a back pocket of MEK1. While the S3 pocket is located at the surface of the enzyme, which provides a polar environment, the back pocket in MEK1 is deeply buried in the protein and is of pronounced apolar character. This study analyzes environmental effects on XB in protein-ligand complexes. It is hypothesized that energetic gains by XB are predominantly not due to water replacements but originate from direct interactions between the XB donor (Caryl-X) and the XB acceptor (C=O) in the correct geometry. New X-ray co-crystal structures in the same crystal form (space group P2(1)2(1)2(1)) were obtained for aryl chloride, bromide, and iodide ligands bound to hcatL. These high-resolution structures reveal that the backbone C=O group of Gly61 in most hcatL co-crystal structures maintains water solvation while engaging in XB. An aryl-CF3-substituted ligand of hcatL with an unexpectedly high affinity was found to adopt the same binding geometry as the aryl halides, with the CF3 group pointing to the C=O group of Gly61 in the S3 pocket. In this case, a repulsive F2C-F⋅⋅⋅O=C contact apparently is energetically overcompensated by other favorable protein-ligand contacts established by the CF3 group.
The tert-butyl group is a common motif in medicinal chemistry. Its incorporation into bioactive compounds is often accompanied by unwanted property modulation, such as increased lipophilicity and decreased metabolic stability. Several alternative substituents are available for the drug discovery process. Herein, physicochemical data of two series of drug analogues of bosentan and vercirnon are documented as part of a comparative study of tert-butyl, pentafluorosulfanyl, trifluoromethyl, bicyclo[1.1.1]pentanyl, and cyclopropyl-trifluoromethyl substituents.
Als Halogenbrücken (XBs) werden nicht-kovalente Wechselwirkungen mit der allgemeinen Struktur DX···A zwischen Halogenverbindungen (DX: XB-Donor, wobei X = Cl, Br, I) und Nukleophilen (A: XB-Akzeptor) bezeichnet.[1, 2] Seit ihrer ersten Beobachtung in Cokristallstrukturen von 1,4-Dioxan mit Br 2 durch Hassel und Hvoslef im Jahre 1954 [3] wurden XBs zunehmend im Kristall-Engineering und in der supramolekularen Chemie im Festkörper genutzt.[4-6] Die Natur der Wechselwirkung und das ihr zugrundeliegende s-Loch im XB-Donor wurden in theoretischen Studien ausführlich untersucht. [1,2,[7][8][9] Kürzlich wurde die attraktive Natur der XB-Wechselwirkungen in Komplexen zwischen 1-Iodperfluoralkanen und verschiedenen Donoren auch in Lösung bestätigt und quantifiziert.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.