The gait variables of 10 swimmers, 10 basketball players, and 16 soccer players were compared. They were all male and right-handed. There was no statistical difference between the three groups in age, weight and height. Spatial and temporal gait variables were measured with the Bessou gait analyzer. In the swimmers group, the gait variables of the right side were not statistically different from those of the left side. The right propulsion double support duration, right cycle duration, and right late swing phase duration were respectively longer than those on the left side for the basketball players. The right propulsion double support duration, right step length, and right late swing phase duration were higher than those on the left side for the soccer players. Moreover, a discriminant analysis performed with the gait variables permitted significant differentiation between the three groups. In conclusion, both basketball and soccer players presented asymmetrical gait variables, that have never been previously reported in normal subjects, or in swimmers. These results suggest that the anticipatory postural adjustments programmed to be used just before a jump or a shoot influence the motor program of the spontaneous locomotion. These gait asymmetries could also be due to asymmetric muscle development.
These data provide relationships between Pmax, Pmean, and foot areas and weight and shoe size and clearly indicate no age dependence of pedobarographic data. They also provide stable values of the forefoot-rearfoot area ratio. These data should help clinicians evaluate abnormal foot placement in standing patients.
HighlightsPsychophysical estimate of plantar vibration perception (n coefficient) was obtained.In all subjects higher n values were measured at the 150 Hz vibration frequency.n values bring complementary information of vibration detection threshold.
Objective: The cutaneous mechanoreceptors of the foot sole detect the changes in the application of mechanical loads on the plantar surface during gait and standing, and contribute to controlling the standing balance and postural reflexes in healthy subjects. A local thickening of the foot sole skin occurs in response to repetitive load application. We hypothesized that an elevated skin hardness of the foot sole could reduce its mechano sensitivity.
Methods:In healthy subjects, we quantified the sensation produced by different amplitudes of vibratory stimulations at two frequencies (25 and 150 Hz). The vibration threshold was determined on the 1 st or 2 nd , and 5 th metatarsal heads, and the heel at each vibration frequency. The Stevens power function (Ψ=k.Φ n ) allowed to obtain regression equations between the estimate (Ψ) of the vibratory stimuli and their physical magnitude (Φ). Any increase in the absolute k value (all were negative) indicated a reduced sensitivity to the lowest loads. The n coefficient measured the global perception. The highest skin hardness (Shore) was measured on the 5th metatarsal head and the heel. In some subjects, superficial skin abrasion of the 5 th metatarsal head was performed and the vibration sensitivity was tested again.
Results:The vibration threshold was significantly higher at the level of the 5 th metatarsal head and the heel. The k value was significantly higher at the 25 and 150 Hz frequencies for the 5 th metatarsal head, and only at 25 Hz for the heel. At both vibration frequencies, negative correlations were obtained between the k values and skin hardness. After skin abrasion, the n coefficient was significantly higher at both vibration frequencies.
Conclusion:Skin hardness affects the foot sole mechano sensitivity and could alter the control of posture during standing and walking. This indicates that foot care by podiatrist are relevant to improve posture control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.