1. The participation of sympathetic efferent fibres in wound healing is not well understood. The aim of the present study was to investigate the effects of beta(1)- and beta(2)-adrenoceptor blockade on rat excisional cutaneous wound healing. 2. Male rats were treated orally with propranolol dissolved in drinking water (50 mg/kg per day), whereas the control group received drinking water without propranolol. Propranolol was administered daily until rats were killed. A full-thickness excisional lesion was performed. The lesion area was measured to evaluate wound contraction. After rats had been killed, lesion and adjacent normal skin were formol fixed and paraffin embedded. Sections were stained with haematoxylin-eosin, Sirius red or Toluidine blue and immunostained for a-smooth muscle actin or proliferating cell nuclear antigen. 3. Propranolol-treated rats presented delayed wound contraction and epidermal healing and decreased hydroxyproline levels, collagen density and neo-epidermis thickness. Blockade of beta(1)- and beta(2)-adrenoceptors increased epidermal and connective tissue cell proliferation, polymorphonuclear leucocyte migration, myofibroblast density and mast cell migration. The volume density of blood vessels was increased and vessels were more dilated in propranolol-treated animals. 4. Thus, we conclude that beta(1)- and beta(2)-adrenoceptor blockade impairs cutaneous wound healing. This information should be considered by physicians during the treatment of patients who present with hypertension and problems in the healing process (such as venous ulcers).
The sympathetic nervous system plays an important role in wound healing, but its mechanism of action is poorly understood. The aim of this study was to investigate the effects of beta- and alpha-adrenoceptor blockade on cutaneous wound healing. Male rats were treated with propranolol (beta1- and beta2-antagonist), atenolol (beta1-antagonist), or phentolamine (alpha1- and alpha2-antagonist) dissolved in drinking water. A full-thickness excisional lesion was created and the wound area was measured. Fourteen days after wounding, lesions and adjacent skin were removed, formalin-fixed, and paraffin-embedded. Sections were stained with hematoxylin-eosin and toluidine blue, and immunostained for alpha-smooth muscle actin and proliferating cell nuclear antigen. Wound contraction was delayed in propranolol- and atenolol-treated animals but not in phentolamine-treated animals. Reepithelialization was decreased only in propranolol-treated animals. beta1- and beta2-adrenoceptor blockade delayed leukocyte migration, epidermal and connective tissue cell proliferation, myofibroblastic differentiation, and mast cell migration. The volume density of blood vessels was increased in the propranolol- and atenolol-treated animals compared with controls. The levels of matrix metalloproteases (MMP-2 and MMP-9) decreased in the propranolol- and atenolol-treated animals. alpha1- and alpha2-adrenoceptor blockade only affected leukocyte migration, epithelial and connective tissue cell proliferation, and pro-MMP-9 levels. In conclusion, beta-1 and beta-2, but not alpha-1 and alpha-2, adrenoceptor blockade delays cutaneous wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.