To fully exploit the advantages of fourth-generation synchrotron light sources, diffraction-limited-storage-rings (DLSR) and fully coherent free electron lasers (FELs), beamline mirrors and diffraction grating must be of exceptional quality. To achieve the required mirror and grating quality, the metrology instrumentation and methods used to characterize these challenging optics and, even more so, optical assemblies must also offer exceptional functionality and performance. One of the most widely used slope measuring instruments for characterizing x-ray optics is the long trace profiler (LTP). The easily reconfigurable mechanical design of the LTP allows optimization of the profiler arrangement to the specifics of a particular metrology task. Here, we discuss the optical schematic, design, and performance of an original multifunctional light beam source that provides functional flexibility of the LTP optical sensor. With this source, the LTP can be easily reconfigured for measurements of x-ray mirrors or diffraction gratings that have widely different source coherence requirements. Usage of a source with a low degree of coherence for mirror metrology helps to suppress the LTP systematic errors due to spurious interference effects in the LTP optical elements. A high-coherence narrow-band source is used for groove-density-distribution characterization of x-ray diffraction gratings. The systematic error and spatial resolution of the LTP with the different sources is also measured and analyzed.
X-ray optics, desired for beamlines at free-electron-laser and diffraction-limited-storage-ring x-ray light sources, must have almost perfect surfaces, capable of delivering light to experiments without significant degradation of brightness and coherence. To accurately characterize such optics at an optical metrology lab, two basic types of surface slope profilometers are used: the long trace profilers (LTPs) and nanometer optical measuring (NOM) like angular deflectometers, based on electronic autocollimator (AC) ELCOMAT-3000. The inherent systematic errors of the instrument's optical sensors set the principle limit to their measuring performance. Where autocollimator of a NOM-like profiler may be calibrated at a unique dedicated facility, this is for a particular configuration of distance, aperture size, and angular range that does not always match the exact use in a scanning measurement with the profiler. Here we discuss the developed methodology, experimental setup , and numerical methods of transferring the calibration of one reference AC to the scanning AC of the Optical Surface Measuring System (OSMS), recently brought to operation at the ALS X˗Ray Optics Laboratory. We show that precision calibration of the OSMS performed in three steps, allows us to provide high confidence and accuracy low-spatial-frequency metrology and not 'print into' measurements the inherent systematic error of tool in use. With the examples of the OSMS measurements with a state-of-the-art x-ray aspherical mirror, available from one of the most advanced vendors of x˗ray optics, we demonstrate the high efficacy of the developed calibration procedure. The results of our work are important for obtaining high reliability data, needed for sophisticated numerical simulations of beamline performance and optimization of beamline usage of the optics.
Beamline improvements through the years have been critical for maintaining high throughput and reliability on macromolecular crystallography synchrotron beamlines. At the BCSB, development of microparts and assembly procedures are becoming more important in order to continually evolve our beamlines. I will present innovations and improvements in potential beam measurement strategies utilizing a diode beamstop system, developed in house at the BCSB. There have been four generations in the development process of the diode beamstop (DBS), resulting in the development of unique micromanufacturing processes. These will be described, and the specifics of each generation of the DBS as well as the most recent results from the use of the DBS will be presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.