The tumor necrosis factor receptor 1 (TNFR1) and the Fas receptor recruit complexes formed by the interactions between RIP kinase, TRADD, FADD and RAIDD - adaptor proteins that contain death domains - which in turn recruit other proteins to initiate signaling [1][2][3][4][5]. To identify proteins associated with the TNF signaling pathway, we performed a yeast two-hybrid interaction screen using RIP as bait. We isolated a kinase, RIP3, which shares homology with the kinase domain of RIP and RIP2 (also known as Rick or CARDIAK). RIP3 could be co-immunoprecipitated with RIP, TRAF2 and TNFR1 in mammalian cells. The carboxy-terminal domain of RIP3, like that of RIP, could activate the transcription factor NFkappaB and induce apoptosis when expressed in mammalian cells. Interestingly, this region shares no significant sequence homology to the death domain of RIP, the caspase-recruiting domain (CARD) of RIP2 [6][7][8] or any other apoptosis-inducing domain. As with RIP and RIP2, the kinase domain of RIP3 was not required for either NFkappaB activation or apoptosis induction. Overexpression of a dominant-negative mutant of RIP3 strongly inhibited the caspase activation but not the NFkappaB activation induced by TNFalpha. Therefore, RIP3 appears to function as an intermediary in TNFalpha-induced apoptosis.
The commercial availability of high quality 150 mm 4H SiC wafers has aided in the growth of SiC power device fabrication. The progress of 150 mm 4H SiC wafer development at Dow Corning is reviewed. Defect densities compare well to those typical for 100 mm wafers, with even lower threading screw dislocation densities observed in 150 mm wafers. Resistivity data shows a comparable range from 0.012 – 0.025 ohm.cm, and excellent shape control is highlighted for wafer thicknesses of 350 μm and 500 μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.