In parallel with the rapid growth of obesity, there is also an increase in the prevalence of type 2 diabetes mellitus (T2D) worldwide. Due to its complications, cardiovascular diseases are the leading cause of death in those patients. In the last two decades, special attention has been given to oxidative stress and inflammation, as the underlying mechanisms related to T2D occurrence and progression. Moreover, micro-ribonucleic acids (miRNAs) as new genetic biomarkers take an important place in the investigation of different metabolic pathways of insulin signaling. In this review article, we discuss microRNA modulation with oxidative stress and inflammation in patients with T2D. Better insight into the novel potential therapeutic targets for treatment of diabetes and its complications is of utmost importance for public health.
Objective: Oxidative stress is assumed to be the underlying feature of non-alcoholic fatty liver disease (NAFLD). To our knowledge, the mutual involvement of redox status homeostasis parameters [i.e., advanced oxidation protein products (AOPP), pro-oxidant-antioxidant balance (PAB), total oxidant status (TOS), total antioxidant status (TAS) and oxidative-stress index (OSI)] and cardiometabolic biomarkers in subjects with NAFLD has not been examined yet. Accordingly, we aimed to investigate this potential relationship.Patients and Methods: A total of 122 subjects with NAFLD were compared with 56 participants without NAFLD. The diagnosis of NAFLD was confirmed by abdominal ultrasound. Anthropometric and biochemical parameters were measured. OSI, Castelli’s Risk Index I (CRI-I) and Castelli’s Risk Index II (CRI-II) were calculated. Univariate and multivariate binary logistic regression analysis were used to test the associations between oxidative stress and cardiometabolic markers, respectively and NAFLD. Principal component analysis (PCA) was applied to explore its mutual effect on NAFLD status.Results: Significant positive associations of CRI-I, CRI-II, high sensitivity C-reactive protein (hsCRP) and AOPP with NAFLD were found. PCA analysis extracted 3 significant factors: Oxidative stress-cardiometabolic related factor (i.e., triglycerides, AOPP, HDL-c and HbA1c)-explained 36% of variance; Pro-oxidants related factor (i.e., TOS and PAB)-explained 17% of variance; and Antioxidants related factor (i.e., TAS)-explained 15% of variance of the tested parameters. Moreover, binary logistic regression analysis revealed significant predictive ability of Oxidative stress-cardiometabolic related factor (p<0.001) and Pro-oxidants related factor (p<0.05) towards NAFLD status.Conclusion: In addition to oxidative stress (i.e., determined by higher AOPP levels), dyslipidemia (i.e., determined by higher lipid indexes: CRI-I and CRI-II) and inflammation (determined by higher hsCRP) are independently related to NAFLD status. The mutual involvement of pro-oxidants (i.e., TOS and PAB), or the joint involvement of pro-oxidants (i.e., AOPP) and cardiometabolic parameters (i.e., HbA1c, triglycerides and HDL-c) can differentiate subjects with NAFLD from those individuals without this metabolic disorder. New studies are needed to validate our results in order to find the best therapeutic approach for NAFLD.
Background Inflammation, oxidative stress and an imbalance between proteases and protease inhibitors are recognized pathophysiological features of chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate serum levels of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in patients with COPD and to assess their relationship with lung function, symptom severity scores and recent acute exacerbations. Methods In this observational cohort study, serum levels of MMP-9 and TIMP-1 and the MMP-9/TIMP-1 ratio in the peripheral blood of COPD patients with stable disease and healthy controls were determined, and their association with lung function (postbronchodilator spirometry, body plethysmography, single breath diffusion capacity for carbon monoxide), symptom severity scores (mMRC and CAT) and exacerbation history were assessed. Results COPD patients (n = 98) had significantly higher levels of serum MMP-9 and TIMP-1 and a higher MMP-9/TIMP-1 ratio than healthy controls (n = 47) (p ≤ 0.001). The areas under the receiver operating characteristic curve for MMP-9, TIMP-1 and the MMP-9/TIMP-1 ratio for COPD diagnosis were 0.974, 0.961 and 0.910, respectively (all p < 0.05). MMP-9 and the MMP-9/TIMP-1 ratio were both negatively correlated with FVC, FEV1, FEV1/FVC, VC, and IC (all p < 0.05). For MMP-9, a positive correlation was found with RV/TLC% (p = 0.005), and a positive correlation was found for the MMP-9/TIMP-1 ratio with RV% and RV/TLC% (p = 0.013 and 0.002, respectively). Patients with COPD GOLD 3 and 4 presented greater MMP-9 levels and a greater MMP-9/TIMP-1 ratio compared to GOLD 1 and 2 patients (p ≤ 0.001). No correlation between diffusion capacity for carbon monoxide and number of acute exacerbations in the previous year was found. Conclusions COPD patients have elevated serum levels of MMP-9 and TIMP-1 and MMP-9/TIMP-1 ratio. COPD patients have an imbalance between MMP-9 and TIMP-1 in favor of a pro-proteolytic environment, which overall indicates the importance of the MMP-9/TIMP-1 ratio as a potential biomarker for COPD diagnosis and severity.
Lung trauma has been considered to be one of the vital injuries induced by explosion-generated blast overpressure. Conflicting evidence exists as to whether nitric oxide plays a crucial role in acute lung injury induced by blast. Data presented in this study demonstrate that local exposure of midthoracic region to moderate-level blast overpressure significantly enhanced lipid peroxidation product malondialdehyde and superoxide anion generation in rabbit's lungs 30 minutes after exposure, whereas the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase) activity showed parallel increase. NG-nitro-L-arginine methyl ester, a non-specific inhibitor of nitric oxide synthase (NOS), had no effects on the measured parameters suggesting that oxidative stress induced by blast exposure might be independent from NOS
Cardiometabolic diseases, such as type 2 diabetes mellitus (DM) and cardiovascular disease (CVD), are a great health concern. The strategies aimed to increase awareness and prevention, in conjunction with timely diagnosis and optimal management of these conditions, represent the main lines of action to improve life expectancy and quality. In recent years, the introduction of innovative therapies for the treatment of DM and CVD has provided new hope for high-risk patients. Yet, the implementation of preventive measures in achieving cardiometabolic health is far from successful and requires further improvement. The development of cardiometabolic disorders is a complex, multifactorial process involving several metabolic pathways as well as genetic and environmental factors. Decreasing cumulative exposure during the entire life course and timely recognition and targeting of potential risk-enhancing factors could pave the way toward more successful prevention of cardiometabolic disorders. Nowadays, in the era of “omics” technologies, it is possible to identify novel biomarkers and therapeutic targets, which offers the possibility to apply an individualized approach for each patient. This review will discuss potential applications of genomic, transcriptomic, epigenetic and metabolomic biomarkers for the personalized prevention of cardiometabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.