Bending the curve of terrestrial biodiversity needs an integrated strategy Summary paragraph Increased efforts are required to prevent further losses of terrestrial biodiversity and the ecosystem services it provides 1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity 3-yet, just feeding the growing human population will make this a challenge 4. We use an ensemble of land-use and biodiversity models to assess whether (and if so, how) humanity can reverse terrestrial biodiversity declines due to habitat conversion, a major threat to biodiversity 5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, may allow to feed the growing human population while reversing global terrestrial biodiversity trends from habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land, and generalize landscapelevel conservation planning, biodiversity trends from habitat conversion could become positive by mid-century on average across models (confidence interval: 2042-2061), but not for all models. Food prices could increase and, on average across models, almost half (confidence interval: 34-50%) of future biodiversity losses could not be avoided. However, additionally tackling the drivers of landuse change may avoid conflict with affordable food provision and reduces the food system's environmental impacts. Through further sustainable intensification and trade, reduced food waste, and healthier human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats, such as climate change, must be addressed to truly reverse biodiversity declines, our results show that bold conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy. Reversing biodiversity trends by 2050 Without further efforts to counteract habitat loss and degradation, we projected that global biodiversity will continue to decline (BASE scenario; Fig. 1). Rates of loss over time for all nine BDIs in 2010-2050 were close to or greater than those estimated for 1970-2010 (Extended data Extended Data Table 1). For various biodiversity aspects, on average across IAM and BDI combinations, peak losses over the 2010-2100 period were: 13% (range: 1-26%) for the extent of suitable habitat, 54% (range: 45-63%) for wildlife population density, 5% (range: 2-9%) for local compositional intactness , 4% (range: 1-12%) for global extinctions, and 4% (range: 2-8%) for regional extinctions (Extended Data Table 1). Percentage losses were greatest in biodiversity-rich regions (Sub-Saharan Africa, South Asia, South East Asia, the Caribbean and Latin America; Extended Data Fig. 2). The projected future trends for habitat loss and degradation and its driv...
Biodiversity and ecosystem service losses driven by land use change are expected to intensify as a growing and more affluent global population requires more agricultural and forestry products, and teleconnections in the global economy lead to increasing remote environmental responsibility. By combining global biophysical and economic models, we show that between the years 2000-2011 overall population and economic growth resulted in increasing total impacts on bird diversity and carbon sequestration globally, despite a reduction of land–use impacts per unit of GDP. The exceptions were North America and Western Europe, where there was a reduction of forestry and agriculture impacts on nature, accentuated by the 2007-2008 financial crisis. Biodiversity losses occurred predominantly in Central and Southern America, Africa and Asia with international trade an important and growing driver. In 2011, 33% of Central and Southern America and 26% of Africa’s biodiversity impacts were driven by consumption in other world regions. Overall, cattle farming is the major driver of biodiversity loss, but oil seeds production showed the largest increases in biodiversity impacts. Forestry activities exerted the highest impact on carbon sequestration, and also showed the largest increase in the 2000-2011 period. Our results suggest that to address the biodiversity crisis, governments should take an equitable approach recognizing remote responsibility, and promote a shift of economic development towards activities with low biodiversity impacts.
Scenario‐based biodiversity modelling is a powerful approach to evaluate how possible future socio‐economic developments may affect biodiversity. Here, we evaluated the changes in terrestrial biodiversity intactness, expressed by the mean species abundance (MSA) metric, resulting from three of the shared socio‐economic pathways (SSPs) combined with different levels of climate change (according to representative concentration pathways [RCPs]): a future oriented towards sustainability (SSP1xRCP2.6), a future determined by a politically divided world (SSP3xRCP6.0) and a future with continued global dependency on fossil fuels (SSP5xRCP8.5). To this end, we first updated the GLOBIO model, which now runs at a spatial resolution of 10 arc‐seconds (~300 m), contains new modules for downscaling land use and for quantifying impacts of hunting in the tropics, and updated modules to quantify impacts of climate change, land use, habitat fragmentation and nitrogen pollution. We then used the updated model to project terrestrial biodiversity intactness from 2015 to 2050 as a function of land use and climate changes corresponding with the selected scenarios. We estimated a global area‐weighted mean MSA of 0.56 for 2015. Biodiversity intactness declined in all three scenarios, yet the decline was smaller in the sustainability scenario (−0.02) than the regional rivalry and fossil‐fuelled development scenarios (−0.06 and −0.05 respectively). We further found considerable variation in projected biodiversity change among different world regions, with large future losses particularly for sub‐Saharan Africa. In some scenario‐region combinations, we projected future biodiversity recovery due to reduced demands for agricultural land, yet this recovery was counteracted by increased impacts of other pressures (notably climate change and road disturbance). Effective measures to halt or reverse the decline of terrestrial biodiversity should not only reduce land demand (e.g. by increasing agricultural productivity and dietary changes) but also focus on reducing or mitigating the impacts of other pressures.
A large number of diversity metrics are available to study and monitor biodiversity, and their responses to biodiversity changes are not necessarily coherent with each other. The choice of biodiversity metrics may thus strongly affect our interpretation of biodiversity change and, hence, prioritization of resources for conservation. Therefore it is crucial to understand which metrics respond to certain changes, are the most sensitive to change, show consistent responses across different communities, detect early signals of species decline, and are insensitive to demographic stochasticity. Here we generated synthetic communities and simulated changes in their composition according to 9 scenarios of biodiversity change to investigate the behaviour of 14 biodiversity metrics. Metrics showed diverse abilities to detect changes under different scenarios. Sørensen similarity index, arithmetic and geometric mean abundance, species and functional richness were the most sensitive to community changes. Sørensen similarity index, species richness and geometric abundance showed consistent responses across all simulated communities and scenarios. Sørensen similarity index and geometric mean abundance were able to detect early signals of species decline. Geometric mean abundance, and functional evenness under certain scenarios, had the greatest ability to distinguish directional trends from stochastic changes, but Sørensen similarity index and geometric mean abundance were the only indices to show consistent signals under all replicates and scenarios. Classic abundance-weighted heterogeneity indices (e.g. Shannon index) were insensitive to certain changes or showed misleading responses, and are therefore unsuitable for comparison of biological communities. We therefore suggest that separate metrics of species composition, richness, and abundance should be reported instead of (or in addition to) composite metrics like Shannon index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.