We demonstrate an all-optically switchable ferroelectric liquid crystal (FLC) grating constructed in an alternating binary configuration with different optical properties from domain to domain. A dye-doped FLC is uniformly aligned in one type of domains whereas it is infiltrated into the photo-polymerized networks of reactive mesogens in the other. Compared to conventional nematic LC cases, our FLC grating allows more efficient all-optical modulation and faster diffraction switching between the 0th and the 1st orders in subsecond since the optical response associated with the dye molecules in the layered state is less hindered than in the orientationally ordered state. Our dye-doped FLC grating with periodically infiltrated structures will be useful for designing a new class of all-optically switching systems.
We proposed a concept of an active parallax barrier using a liquid crystal-on-polarizing interlayer (LPI) for near-viewing autostereoscopic displays. In contrast to a conventional two-panel configuration where two independent panels are stacked together for displaying and parallaxing purposes, a monolithic one-panel architecture was demonstrated with the help of the LPI. The LPI was constructed using a polarizer sheet, one side of which provided the support for the active parallax barrier and the other served as the substrate for the image panel. For the active parallax barrier, an array of periodically patterned indium-tin-oxide electrodes was first prepared on the LPI and bi-level structures were subsequently fabricated for the cell gap and the liquid crystal alignment. Our monolithic one-panel architecture allows the near-viewing distance property which is essential for mobile applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.