Increased TRAP exposure was correlated with gut microbial taxa and fasting glucose levels. Gut microbial taxa that were correlated with TRAP partially explained the correlation between TRAP and fasting glucose levels. These results suggest that exposure to air pollutants may negatively impact metabolic health via alterations in the gut microbiota.
Background
Enhanced Recovery After Surgery (ERAS) protocols reduce length of stay, complications and costs for a large number of elective surgical procedures. A similar, structured approach appears to improve outcomes, including mortality, for patients undergoing high-risk emergency general surgery, and specifically emergency laparotomy. These are the first consensus guidelines for optimal care of these patients using an ERAS approach.
Methods
Experts in aspects of management of the high-risk and emergency general surgical patient were invited to contribute by the International ERAS® Society. Pubmed, Cochrane, Embase, and MEDLINE database searches on English language publications were performed for ERAS elements and relevant specific topics. Studies on each item were selected with particular attention to randomized controlled trials, systematic reviews, meta-analyses and large cohort studies, and reviewed and graded using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system. Recommendations were made on the best level of evidence, or extrapolation from studies on non-emergency patients when appropriate. The Delphi method was used to validate final recommendations. The guideline has been divided into two parts: Part 1—Preoperative Care and Part 2—Intraoperative and Postoperative management. This paper provides guidelines for Part 1.
Results
Twelve components of preoperative care were considered. Consensus was reached after three rounds.
Conclusions
These guidelines are based on the best available evidence for an ERAS approach to patients undergoing emergency laparotomy. Initial management is particularly important for patients with sepsis and physiological derangement. These guidelines should be used to improve outcomes for these high-risk patients.
BackgroundEvidence suggests that childhood near-roadway air pollution (NRAP) exposures contribute to increased body mass index (BMI); however, effects of NRAP exposure during the vulnerable periods including in utero and first year of life have yet to be established. In this study, we examined whether exposure to elevated concentrations of NRAP during in utero and/or first year of life increase childhood BMI growth.MethodsParticipants in the Children’s Health Study enrolled from 2002 to 2003 with annual visits over a four-year period and who changed residences before study entry were included (n = 2318). Annual height and weight were measured and lifetime residential NRAP exposures including in utero and first year of life periods were estimated by nitrogen oxides (NOx) using the California line-source dispersion model. Linear mixed effects models assessed in utero or first year near-road freeway and non-freeway NOx exposures and BMI growth after adjusting for age, sex, race/ethnicity, parental education, Spanish questionnaire, and later childhood near-road NOx exposure.ResultsA two-standard deviation difference in first year of life near-road freeway NOx exposure was associated with a 0.1 kg/m2 (95% confidence interval (CI): 0.03, 0.2) faster increase in BMI growth per year and a 0.5 kg/m2 (95% CI: 0.02, 0.9) higher attained BMI at age 10 years.ConclusionsHigher exposure to early life NRAP increased the rate of change of childhood BMI and resulted in a higher attained BMI at age 10 years that were independent of later childhood exposures. These findings suggest that elevated early life NRAP exposures contribute to increased obesity risk in children.Electronic supplementary materialThe online version of this article (10.1186/s12940-018-0409-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.