Studies using dogs provide an ideal solution to the gap in animal models of natural disease and translational medicine. This is evidenced by approximately 400 inherited disorders being characterized in domesticated dogs, most of which are relevant to humans. There are several hundred isolated populations of dogs (breeds) and each has vastly reduced genetic variation compared to humans; this simplifies disease mapping and pharmacogenomics. Dogs age five to eight-fold faster than humans, share environments with their owners, are usually kept until old age, and receive a high level of health care. Farseeing investigators recognized this potential and, over the last decade, developed the necessary tools and infrastructure to utilize this powerful model of human disease, including the sequencing of the dog genome in 2005. Here we review the nascent convergence of genetic and translational canine models of spontaneous disease, focusing on cancer.
The complement of fungal cell surface proteins is widely regulated by ubiquitination of membrane proteins, which results in their endocytosis and vacuolar degradation. For diverse fungal transporters, the specificity of ubiquitination is conferred by alpha arrestin adaptors, which recruit the Nedd4 family E3 ubiquitin ligase Rsp5. A recent study showed that one mammalian alpha arrestin also mediates ubiquitination and lysosomal trafficking of an activated plasma membrane receptor. Here we first screen all five widely-expressed human alpha arrestins for subcellular localization in ligand-stimulated and -unstimulated cells overexpressing the seven transmembrane receptor vasopressin 2. We then characterize the effects of alpha arrestins ARRDC3 and ARRDC4 upon activation of the seven transmembrane receptors vasopressin 2 and beta adrenergic 2. Using biochemical and imaging approaches, we show that ligand-activated receptors interact with alpha arrestins, and this results in recruitment of Nedd4 family E3 ubiquitin ligases and receptor ubiquitination – which are known to result in lysosomal trafficking. Our time course studies show these effects occur in the first 1–5 minutes after ligand activation, the same time that beta arrestins are known to have roles in receptor endocytic trafficking and kinase signaling. We tested the possibility that alpha and beta arrestins function coordinately and found co-immunoprecipitation and colocalization evidence to support this. Others recently reported that Arrdc3 knockout mice are lean and resistant to obesity. In the course of breeding our own Arrdc3-deficient mice, we observed two novel phenotypes in homozygotes: skin abnormalities, and embryonic lethality on normal chow diet, but not on high fat diet. Our findings suggest that alpha and beta arrestins function coordinately to maintain the optimal complement and function of cell surface proteins according to cellular physiological context and external signals. We discuss the implications of the alpha arrestin functions in fungi having evolved into coordinated alpha/beta arrestin functions in animals.
BackgroundDespite the tremendous therapeutic advances that have stemmed from somatic oncogenetics, survival of some cancers has not improved in 50 years. Osteosarcoma still has a 5-year survival rate of 66%. We propose the natural canine osteosarcoma model can change that: it is extremely similar to the human condition, except for being highly heritable and having a dramatically higher incidence. Here we reanalyze published genome scans of osteosarcoma in three frequently-affected dog breeds and report entirely new understandings with immediate translational indications.ResultsFirst, meta-analysis revealed association near FGF9, which has strong biological and therapeutic relevance. Secondly, risk-modeling by multiple logistic regression shows 22 of the 34 associated loci contribute to risk and eight have large effect sizes. We validated the Greyhound stepwise model in our own, independent, case-control cohort. Lastly, we updated the gene annotation from approximately 50 genes to 175, and prioritized those using cross-species genomics data. Mostly positional evidence suggests 13 genes are likely to be associated with mapped risk (including MTMR9, EWSR1 retrogene, TANGO2 and FGF9). Previous annotation included seven of those 13 and prioritized four by pathway enrichment. Ten of our 13 priority genes are in loci that contribute to risk modeling and thus can be studied epidemiologically and translationally in pet dogs. Other new candidates include MYCN, SVIL and MIR100HG.ConclusionsPolygenic osteosarcoma-risk commonly rises to Mendelian-levels in some dog breeds. This justifies caninized animal models and targeted clinical trials in pet dogs (e.g., using CDK4/6 and FGFR1/2 inhibitors).Electronic supplementary materialThe online version of this article (10.1186/s12864-019-5531-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.