Loss of PTEN function by mutational or other mechanisms is an early event in endometrial tumorigenesis that may occur in response to known endocrine risk factors and offers an informative immunohistochemical biomarker for premalignant disease. Individual PTEN-negative glands in estrogen-exposed endometria are the earliest recognizable stage of endometrial carcinogenesis. Proliferation into dense clusters that form discrete premalignant lesions follows.
Germline mutations in the tumour suppressor gene PTEN have been implicated in two hamartoma syndromes that exhibit some clinical overlap, Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome (BRR). PTEN maps to 10q23 and encodes a dual specificity phosphatase, a substrate of which is phosphatidylinositol 3,4,5-triphosphate, a phospholipid in the phosphatidylinositol 3-kinase pathway. CS is characterized by multiple hamartomas and an increased risk of benign and malignant disease of the breast, thyroid and central nervous system, whilst the presence of cancer has not been formally documented in BRR. The partial clinical overlap in these two syndromes is exemplified by the hallmark features of BRR: macrocephaly and multiple lipomas, the latter of which occur in a minority of individuals with CS. Additional features observed in BRR, which may also occur in a minority of CS patients, include Hashimoto's thyroiditis, vascular malformations and mental retardation. Pigmented macules of the glans penis, delayed motor development and neonatal or infant onset are noted only in BRR. In this study, constitutive DNA samples from 43 BRR individuals comprising 16 sporadic and 27 familial cases, 11 of which were families with both CS and BRR, were screened for PTEN mutations. Mutations were identified in 26 of 43 (60%) BRR cases. Genotype-phenotype analyses within the BRR group suggested a number of correlations, including the association of PTEN mutation and cancer or breast fibroadenoma in any given CS, BRR or BRR/CS overlap family ( P = 0.014), and, in particular, truncating mutations were associated with the presence of cancer and breast fibroadenoma in a given family ( P = 0.024). Additionally, the presence of lipomas was correlated with the presence of PTEN mutation in BRR patients ( P = 0.028). In contrast to a prior report, no significant difference in mutation status was found in familial versus sporadic cases of BRR ( P = 0.113). Comparisons between BRR and a previously studied group of 37 CS families suggested an increased likelihood of identifying a germline PTEN mutation in families with either CS alone or both CS and BRR when compared with BRR alone ( P = 0.002). Among CS, BRR and BRR/CS overlap families that are PTEN mutation positive, the mutation spectra appear similar. Thus, PTEN mutation-positive CS and BRR may be different presentations of a single syndrome and, hence, both should receive equal attention with respect to cancer surveillance.
The gamma isoform of the peroxisome proliferator-activated receptor, PPAR gamma, regulates adipocyte differentiation and has recently been shown to be expressed in neoplasia of the colon and other tissues. We have found four somatic PPAR gamma mutations among 55 sporadic colon cancers: one nonsense, one frameshift, and two missense mutations. Each greatly impaired the function of the protein. c.472delA results in deletion of the entire ligand binding domain. Q286P and K319X retain a total or partial ligand binding domain but lose the ability to activate transcription through a failure to bind to ligands. R288H showed a normal response to synthetic ligands but greatly decreased transcription and binding when exposed to natural ligands. These data indicate that colon cancer in humans is associated with loss-of-function mutations in PPAR gamma.
To determine whether Akt activation was sufficient for the transformation of normal prostate epithelial cells, murine prostate restricted Akt kinase activity was generated in transgenic mice (MPAKT mice). Akt expression led to p70 S6K activation, prostatic intraepithelial neoplasia (PIN), and bladder obstruction. mRNA expression profiles from MPAKT ventral prostate revealed similarities to human cancer and an angiogenic signature that included three angiogenin family members, one of which was found elevated in the plasma of men with prostate cancer. Thus, the MPAKT model may be useful in studying the role of Akt in prostate epithelial cell transformation and in the discovery of molecular markers relevant to human disease.
PTEN is a novel tumour suppressor gene that encodes a dual-specificity phosphatase with homology to adhesion molecules tensin and auxillin. It recently has been suggested that PTEN dephosphorylates phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3, 4,5)P3], which mediates growth factor-induced activation of intracellular signalling, in particular through the serine-threonine kinase Akt, a known cell survival-promoting factor. PTEN has been mapped to 10q23.3, a region disrupted in several human tumours including haematological malignancies. We have analysed PTEN in a series of primary acute leukaemias and non-Hodgkin's lymphomas (NHLs) as well as in cell lines. We have also examined whether a correlation could be found between PTEN and Akt levels in these samples. We show here that the majority of cell lines studied carries PTEN abnormalities. At the structural level, we found mutations and hemizygous deletions in 40% of these cell lines, while a smaller number of primary haematological malignancies, in particular NHLs, carries PTEN mutations. Moreover, one-third of the cell lines had low PTEN transcript levels, and 60% of these samples had low or absent PTEN protein, which could not be attributed to gene silencing by hypermethylation. In addition, we found that PTEN and phosphorylated Akt levels are inversely correlated in the large majority of the examined samples. These findings suggest that PTEN plays a role in the pathogenesis of haematological malignancies and that it might be inactivated through a wider range of mechanisms than initially considered. The finding that PTEN levels inversely correlate with phosphorylated Akt supports the hypothesis that PTEN regulates PtdIns(3,4,5)P3and suggests a role for PTEN in apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.