Objectives: Develop and implement a machine learning algorithm to predict severe sepsis and septic shock and evaluate the impact on clinical practice and patient outcomes. Design: Retrospective cohort for algorithm derivation and validation, pre-post impact evaluation. Setting: Tertiary teaching hospital system in Philadelphia, PA. Patients: All non-ICU admissions; algorithm derivation July 2011 to June 2014 (n = 162,212); algorithm validation October to December 2015 (n = 10,448); silent versus alert comparison January 2016 to February 2017 (silent n = 22,280; alert n = 32,184). Interventions: A random-forest classifier, derived and validated using electronic health record data, was deployed both silently and later with an alert to notify clinical teams of sepsis prediction. Measurement and Main Result: Patients identified for training the algorithm were required to have International Classification of Diseases, 9th Edition codes for severe sepsis or septic shock and a positive blood culture during their hospital encounter with either a lactate greater than 2.2 mmol/L or a systolic blood pressure less than 90 mm Hg. The algorithm demonstrated a sensitivity of 26% and specificity of 98%, with a positive predictive value of 29% and positive likelihood ratio of 13. The alert resulted in a small statistically significant increase in lactate testing and IV fluid administration. There was no significant difference in mortality, discharge disposition, or transfer to ICU, although there was a reduction in time-to-ICU transfer. Conclusions: Our machine learning algorithm can predict, with low sensitivity but high specificity, the impending occurrence of severe sepsis and septic shock. Algorithm-generated predictive alerts modestly impacted clinical measures. Next steps include describing clinical perception of this tool and optimizing algorithm design and delivery.
Objective: To assess clinician perceptions of a machine learning–based early warning system to predict severe sepsis and septic shock (Early Warning System 2.0). Design: Prospective observational study. Setting: Tertiary teaching hospital in Philadelphia, PA. Patients: Non-ICU admissions November–December 2016. Interventions: During a 6-week study period conducted 5 months after Early Warning System 2.0 alert implementation, nurses and providers were surveyed twice about their perceptions of the alert’s helpfulness and impact on care, first within 6 hours of the alert, and again 48 hours after the alert. Measurements and Main Results: For the 362 alerts triggered, 180 nurses (50% response rate) and 107 providers (30% response rate) completed the first survey. Of these, 43 nurses (24% response rate) and 44 providers (41% response rate) completed the second survey. Few (24% nurses, 13% providers) identified new clinical findings after responding to the alert. Perceptions of the presence of sepsis at the time of alert were discrepant between nurses (13%) and providers (40%). The majority of clinicians reported no change in perception of the patient’s risk for sepsis (55% nurses, 62% providers). A third of nurses (30%) but few providers (9%) reported the alert changed management. Almost half of nurses (42%) but less than a fifth of providers (16%) found the alert helpful at 6 hours. Conclusions: In general, clinical perceptions of Early Warning System 2.0 were poor. Nurses and providers differed in their perceptions of sepsis and alert benefits. These findings highlight the challenges of achieving acceptance of predictive and machine learning–based sepsis alerts.
The coronavirus disease 2019 (COVID-19) pandemic has posed unprecedented challenges in critical care medicine, including extreme demand for intensive care unit (ICU) resources and rapidly evolving understanding of a novel disease. Up to one-third of hospitalized patients with COVID-19 experience critical illness. The most common form of organ failure in COVID-19 critical illness is acute hypoxemic respiratory failure, which clinically presents as acute respiratory distress syndrome (ARDS) in three-quarters of ICU patients. Noninvasive respiratory support modalities are being used with increasing frequency given their potential to reduce the need for intubation. Determining optimal patient selection for and timing of intubation remains a challenge. Management of mechanically ventilated patients with COVID-19 largely mirrors that of non-COVID-19 ARDS. Organ failure is common and portends a poor prognosis. Mortality rates have improved over the course of the pandemic, likely owing to increasing disease familiarity, data-driven pharmacologics, and improved adherence to evidence-based critical care. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
OBJECTIVES: The National Early Warning Score, Modified Early Warning Score, and quick Sepsis-related Organ Failure Assessment can predict clinical deterioration. These scores exhibit only moderate performance and are often evaluated using aggregated measures over time. A simulated prospective validation strategy that assesses multiple predictions per patient-day would provide the best pragmatic evaluation. We developed a deep recurrent neural network deterioration model and conducted a simulated prospective evaluation. DESIGN: Retrospective cohort study. SETTING: Four hospitals in Pennsylvania. PATIENTS: Inpatient adults discharged between July 1, 2017, and June 30, 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We trained a deep recurrent neural network and logistic regression model using data from electronic health records to predict hourly the 24-hour composite outcome of transfer to ICU or death. We analyzed 146,446 hospitalizations with 16.75 million patient-hours. The hourly event rate was 1.6% (12,842 transfers or deaths, corresponding to 260,295 patient-hours within the predictive horizon). On a hold-out dataset, the deep recurrent neural network achieved an area under the precision-recall curve of 0.042 (95% CI, 0.04–0.043), comparable with logistic regression model (0.043; 95% CI 0.041 to 0.045), and outperformed National Early Warning Score (0.034; 95% CI, 0.032–0.035), Modified Early Warning Score (0.028; 95% CI, 0.027– 0.03), and quick Sepsis-related Organ Failure Assessment (0.021; 95% CI, 0.021–0.022). For a fixed sensitivity of 50%, the deep recurrent neural network achieved a positive predictive value of 3.4% (95% CI, 3.4–3.5) and outperformed logistic regression model (3.1%; 95% CI 3.1–3.2), National Early Warning Score (2.0%; 95% CI, 2.0–2.0), Modified Early Warning Score (1.5%; 95% CI, 1.5–1.5), and quick Sepsis-related Organ Failure Assessment (1.5%; 95% CI, 1.5–1.5). CONCLUSIONS: Commonly used early warning scores for clinical decompensation, along with a logistic regression model and a deep recurrent neural network model, show very poor performance characteristics when assessed using a simulated prospective validation. None of these models may be suitable for real-time deployment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.