We have studied the initial development of pluiipotent gut endoderm to hepatocytes using a tissue explant system from mouse embryos. We not only find cellular interactions that specify hepatic differentiation but also those that block hepatogenesis in regions of the endoderm that normally give rise to other tissues. The results implicate both positive and negative signaling in early hepatic specification. In vivo footprinting of the albumin enhancer in precursor gut endoderm shows that the transcriptionally silent but potentially active chromatin is characterized by occupancy of an HNF-3 site. Upon hepatic specification, a host of other factors bind nearby sites as the gene becomes active. Genes in pluripotent cells therefore may be marked for potential expression by entry points in chromatin, where additional factors bind during cell type specification. The findings also provide insight into the evolutionary origin of different endodermal cell types.
With the increased use of small self-complementary adeno-associated viral (AAV) vectors, the design of compact promoters becomes critical for packaging and expressing larger transgenes under ubiquitous or cell-specific control. In a comparative study of commonly used 800-bp cytomegalovirus (CMV) and chicken β-actin (CBA) promoters, we report significant differences in the patterns of cell-specific gene expression in the central and peripheral nervous systems. The CMV promoter provides high initial neural expression that diminishes over time. The CBA promoter displayed mostly ubiquitous and high neural expression, but substantially lower expression in motor neurons (MNs). We report the creation of a novel hybrid form of the CBA promoter (CBh) that provides robust long-term expression in all cells observed with CMV or CBA, including MNs. To develop a short neuronal promoter to package larger transgenes into AAV vectors, we also found that a 229-bp fragment of the mouse methyl-CpG-binding protein-2 (MeCP2) promoter was able to drive neuron-specific expression within the CNS. Thus the 800-bp CBh promoter provides strong, long-term, and ubiquitous CNS expression whereas the MeCP2 promoter allows an extra 570-bp packaging capacity, with low and mostly neuronal expression within the CNS, similar to the MeCP2 transcription factor.
mRNA localization provides polarized cells with a locally renewable source of proteins. In neurons, mRNA translation can occur at millimeters to centimeters from the cell body, giving the dendritic and axonal processes a means to autonomously respond to their environment. Despite that hundreds of mRNAs have been detected in neuronal processes, there are no reliable means to predict mRNA localization elements. Here, we have asked what RNA elements are needed for localization of transcripts encoding endoplasmic reticulum chaperone proteins in neurons. The 3-untranslated regions (UTRs) of calreticulin and Grp78/BiP mRNAs show no homology to one another, but each shows extensive regions of high sequence identity to their 3UTRs in mammalian orthologs. These conserved regions are sufficient for subcellular localization of reporter mRNAs in neurons. The 3UTR of calreticulin has two conserved regions, and either of these is sufficient for axonal and dendritic targeting. However, only nucleotides 1315-1412 show ligand responsiveness to neurotrophin 3 (NT3) and myelin-associated glycoprotein (MAG). This NT3-and MAG-dependent axonal mRNA transport requires activation of JNK, both for calreticulin mRNA and for other mRNAs whose axonal levels are commonly regulated by NT3 and MAG.
High mobility group (HMG) proteins concentrate in the nucleus, interacting with chromatin. Amphoterin is an HMG protein (HMGB1) that has been shown to have extranuclear functions and can be secreted from some cell types. Exogenous amphoterin can increase neurite growth, suggesting that the secreted protein may have growth promoting activities in neurons. Consistent with this, we show that depletion of amphoterin mRNA from cultured adult rat DRG neurons attenuates neurite outgrowth, pointing to autocrine or paracrine mechanisms for its growth-promoting effects. The mRNA encoding amphoterin localizes to axonal processes and we showed recently that its 3Ј-UTR is sufficient for axonal localization of heterologous transcripts (Donnelly et al., 2013). Here, we show that amphoterin mRNA is transported constitutively into axons of adult DRG neurons. A preconditioning nerve injury increases the levels of amphoterin protein in axons without a corresponding increase in amphoterin mRNA in the axons. A 60 nucleotide region of the amphoterin mRNA 3Ј-UTR is necessary and sufficient for its localization into axons of cultured sensory neurons. Amphoterin mRNA 3Ј-UTR is also sufficient for axonal localization in distal axons of DRG neurons in vivo. Overexpression of axonally targeted amphoterin mRNA increases axon outgrowth in cultured sensory neurons, but axon growth is not affected when the overexpressed mRNA is restricted to the cell body.
The cyclin dependent kinase inhibitor p27Kip1 is a key cell cycle regulatory protein that is often downregulated in cancer cells. The cellular levels of p27Kip1 are regulated, in part, through translational control mechanisms. The 5′-UTR of the p27Kip1 mRNA is known to harbor an IRES that may facilitate expression of p27Kip1 under conditions of stress such as loss of cell adhesion or growth factor and nutrient deprivation. The results presented here further characterize the p27Kip1 5′-UTR and its IRES activity. We confirm that the major transcription start site of the p27Kip1 gene produces an mRNA with a 5′-UTR of ~472 nucleotides. Other minor transcripts are also observed but the 472 nucleotide 5′-UTR displays the highest IRES activity. A structural model for the 472 nucleotide 5′-UTR was derived from nuclease digestion patterns coupled with MFOLD secondary structural prediction software. These results indicate that the 5′-UTR has significant secondary structure but also contains a large single-stranded loop that extends from nucleotides -31 to -66 relative to the start codon. Mapping of the ribosome entry window indicates that the ribosome is recruited to this single-stranded loop. The single-stranded loop also includes a U-rich sequence that has previously been shown to bind several proteins, including HuR. This is significant because HuR has previously been shown to inhibit p27Kip1 IRES activity and cause downregulation of endogenous p27Kip1 protein levels. Thus HuR may inhibit IRES activity by blocking the ribosome entry site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.