COBRA is a 0.5 Omega pulse generator driving loads of order 10 nH inductance to >1 MA current. The design is based on independently timed, laser-triggered switching of four water pulse-forming lines whose outputs are added in parallel to drive the load current pulse. The detailed design and operation of the switching to give a wide variety of current pulse shapes and rise times from 95 to 230 ns is described. The design and operation of a simple inductive load voltage monitor are described which allows good accounting of load impedance and energy dissipation. A method of eliminating gas bubbles on the underside of nearly horizontal insulator surfaces in water was required for reliable operation of COBRA; a novel and effective solution to this problem is described.
Substance P (SP) is the major endogenous ligand for neurokinin 1 (NK1) receptors and, together with acetylcholine, has an important role in motivated behaviors involving the limbic shell and motor core of the nucleus accumbens (NAc). To determine the functional sites for SP activation of NK-1 receptors and potential interactions with cholinergic neurons in these regions, the authors examined the electron microscopic immunocytochemical localization either of antisera against the NK1 receptor or of the NK1 receptor and either 1) SP or 2) the vesicular acetylcholine transporter (VAchT) in rat NAc. In both the NAc shell and core, NK1 receptor labeling was localized mainly to somatic and dendritic plasma membranes and nearby endosomal organelles in aspiny neurons. In sections through the ventromedial shell that were processed for NK1/SP labeling, 46% of the NK1-immunoreactive dendrites (n = 603 dendrites) showed symmetric or appositional contacts with SP-containing terminals. These terminals and several others that formed symmetric synapses also occasionally were immunoreactive for NK1 receptors. Analysis of the shell region for NK1/VAchT labeling showed that 61% of the total immunoreactive dendrites (n = 534 dendrites) contained NK1 receptors without VAchT, 29% contained both products, and 10% contained VAchT only. Many of the labeled somata and dendrites also received synaptic contact from VAchT-containing terminals. These findings suggest that, in the NAc, NK1 receptors are recycled through endosomal compartments and play a role in modulating mainly the postsynaptic responses, but also the presynaptic release, of SP and/or inhibitory neurotransmitters onto aspiny interneurons, some of which are cholinergic.
Substance P (SP) is the major endogenous ligand for neurokinin 1 (NK1) receptors and, together with acetylcholine, has an important role in motivated behaviors involving the limbic shell and motor core of the nucleus accumbens (NAc). To determine the functional sites for SP activation of NK-1 receptors and potential interactions with cholinergic neurons in these regions, the authors examined the electron microscopic immunocytochemical localization either of antisera against the NK1 receptor or of the NK1 receptor and either 1) SP or 2) the vesicular acetylcholine transporter (VAchT) in rat NAc. In both the NAc shell and core, NK1 receptor labeling was localized mainly to somatic and dendritic plasma membranes and nearby endosomal organelles in aspiny neurons. In sections through the ventromedial shell that were processed for NK1/SP labeling, 46% of the NK1-immunoreactive dendrites (n = 603 dendrites) showed symmetric or appositional contacts with SP-containing terminals. These terminals and several others that formed symmetric synapses also occasionally were immunoreactive for NK1 receptors. Analysis of the shell region for NK1/VAchT labeling showed that 61% of the total immunoreactive dendrites (n = 534 dendrites) contained NK1 receptors without VAchT, 29% contained both products, and 10% contained VAchT only. Many of the labeled somata and dendrites also received synaptic contact from VAchT-containing terminals. These findings suggest that, in the NAc, NK1 receptors are recycled through endosomal compartments and play a role in modulating mainly the postsynaptic responses, but also the presynaptic release, of SP and/or inhibitory neurotransmitters onto aspiny interneurons, some of which are cholinergic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.