BackgroundLittle is understood of Ebola virus disease (EVD) transmission dynamics and community compliance with control measures over time. Understanding these interactions is essential if interventions are to be effective in future outbreaks. We conducted a mixed-methods study to explore these factors in a rural village that experienced sustained EVD transmission in Kailahun District, Sierra Leone.MethodsWe reconstructed transmission dynamics using a cross-sectional survey conducted in April 2015, and cross-referenced our results with surveillance, burial, and Ebola Management Centre (EMC) data. Factors associated with EVD transmission were assessed with Cox proportional hazards regression. Following the survey, qualitative semi-structured interviews explored views of community informants and households.ResultsAll households (n = 240; 1161 individuals) participated in the survey. 29 of 31 EVD probable/confirmed cases died (93·5% case fatality rate); six deaths (20·6%) had been missed by other surveillance systems. Transmission over five generations lasted 16 weeks. Although most households had ≤5 members there was a significant increase in risk of Ebola in households with > 5 members. Risk of EVD was also associated with older age. Cases were spatially clustered; all occurred in 15 households.EVD transmission was better understood when the community experience started to concord with public health messages being given. Perceptions of contact tracing changed from invading privacy and selling people to ensuring community safety. Burials in plastic bags, without female attendants or prayer, were perceived as dishonourable. Further reasons for low compliance were low EMC survival rates, family perceptions of a moral duty to provide care to relatives, poor communication with the EMC, and loss of livelihoods due to quarantine. Compliance with response measures increased only after the second generation, coinciding with the implementation of restrictive by-laws, return of the first survivor, reduced contact with dead bodies, and admission of patients to the EMC.ConclusionsTransmission occurred primarily in a few large households, with prolonged transmission and a high death toll. Return of a survivor to the village and more effective implementation of control strategies coincided with increased compliance to control measures, with few subsequent cases. We propose key recommendations for management of EVD outbreaks based on this experience.
Abstract. This review provides details on the role of Geographical Information Systems (GIS) in current dengue surveillance systems and focuses on the application of open access GIS technology to emphasize its importance in developing countries, where the dengue burden is greatest. It also advocates for increased international collaboration in transboundary disease surveillance to confront the emerging global challenge of dengue.In the last 50 years, dengue incidence has increased 30-fold to more than 50 million cases annually.1 Approximately 70% of those people at risk of dengue reside in the Asia Pacific region, predominantly in developing countries such as the Philippines, Indonesia, Vietnam, and Thailand.1 In lieu of a vaccine, dengue prevention is limited to vector control (chemical spraying, biological control, physical removal of breeding sites, and improving infrastructure) and community education. Surveillance is essential to dengue management, because it identifies the number and distribution of cases, virus serotypes, and severity of disease in a population. Geographical Information Systems (GIS) allow further investigation of surveillance data through spatial statistical analyses and visualization of patterns and relationships between disease and the environment.This paper reviews the role of GIS in current dengue surveillance systems. It identifies ways that GIS can enhance dengue surveillance, and it describes recent technological advances for improved targeting of prevention and control programs. In doing so, this paper advocates for a collaborative approach to dengue management, moving from an autonomous framework to an international model that emphasizes information sharing and program planning at a regional scale.GIS are databases that can capture, store, analyze, and display data that are linked by a common spatial coordinate system. GIS are most commonly used for data visualization in dengue surveillance, allowing identification of the distribution of disease and changes over time and identification of spatial relationships with risk factors for disease.2 Maps for visualization of dengue surveillance data are particularly useful for public health professionals advocating for increased resources, such as vector control or laboratory facilities for serological confirmation of disease, because policy makers respond more positively to maps rather than raw numbers or graphs. 3Mapping the distribution of dengue in a geographic area allows instant visual identification of areas at risk and enables faster mobilization of resources. Figure 1 shows incidence data from the Philippines, where the Cordillera Administrative Region (CAR) had the highest incidence of dengue in 2010. In Nicaragua, Google Earth and ArcGIS were used to map dengue cases and Aedes larval infestation and development sites. 4 These maps were then used by public health staff to target specific neighborhoods for immediate dengue control measures. Spatiotemporal mapping using GIS allows visualization of changes over time in a particul...
Spatiotemporal patterns of Ae. aegypti in Cairns are complex, showing spatial autocorrelation and associations with temperature and rainfall. Sticky ovitraps should be placed no more than 1.2 km apart to ensure entomological coverage and efficient use of resources. Vector density maps provide evidence for the targeting of prevention and control activities. Further research is needed to explore the possibility of developing an early warning system of dengue based on meteorological and environmental factors.
IntroductionThe scale and geographical distribution of the current outbreak in West Africa raised doubts as to the effectiveness of established methods of control. Ebola Virus Disease (EVD) was first detected in Sierra Leone in May 2014 in Kailahun district. Despite high case numbers elsewhere in the country, transmission was eliminated in the district by December 2014. We describe interventions underpinning successful EVD control in Kailahun and implications for EVD control in other areas.MethodsInternal service data and published reports from response agencies were analysed to describe the structure and type of response activities, EVD case numbers and epidemic characteristics. This included daily national situation reports and District-level data and reports of the Sierra Leone Ministry of Health and Sanitation, and Médecins Sans Frontières (MSF) patient data and internal epidemiological reports. We used EVD case definitions provided by the World Health Organisation over the course of the outbreak. Characteristics assessed included level of response activities and epidemiological features such as reported exposure (funeral-related or not), time interval between onset of illness and admission to the EVD Management Centre (EMC), work-related exposures (health worker or not) and mortality. We compared these characteristics between two time periods—June to July (the early period of response), and August to December (when coverage and quality of response had improved). A stochastic model was used to predict case numbers per generation with different numbers of beds and a varying percentage of community cases detected.ResultsThere were 652 probable/confirmed EVD cases from June-December 2014 in Kailahun. An EMC providing patient care opened in June. By August 2014 an integrated detection, treatment, and prevention strategy was in place across the district catchment zone. From June-July to August-December 2014 surveillance and contact tracing staff increased from 1.0 to 8.8 per confirmed EVD case, EMC capacity increased from 32 to 100 beds, the number of burial teams doubled, and health promotion activities increased in coverage. These improvements in response were associated with the following changes between the same periods: the proportion of confirmed/probable cases admitted to the EMC increased from 35% to 83% (χ2 p-value<0·001), the proportion of confirmed patients admitted to the EMC <3 days of symptom onset increased from 19% to 37% (χ2 p-value <0·001), and reported funeral contact in those admitted decreased from 33% to 16% (χ2 p-value <0·001). Mathematical modelling confirmed the importance of both patient management capacity and surveillance and contact tracing for EVD control.DiscussionOur findings demonstrate that control of EVD can be achieved using established interventions based on identification and appropriate management of those who are at risk of and develop EVD, including in the context of ongoing transmission in surrounding regions. Key attributes in achieving control were sufficient patient car...
Abstract. Entomological surveillance and control are essential to the management of dengue fever (DF). Hence, understanding the spatial and temporal patterns of DF vectors, Aedes (Stegomyia) aegypti (L.) and Ae. (Stegomyia) albopictus (Skuse), is paramount. In the Philippines, resources are limited and entomological surveillance and control are generally commenced during epidemics, when transmission is difficult to control. Recent improvements in spatial epidemiological tools and methods offer opportunities to explore more efficient DF surveillance and control solutions: however, there are few examples in the literature from resource-poor settings. The objectives of this study were to: (i) explore spatial patterns of Aedes populations and (ii) predict areas of high and low vector density to inform DF control in San Jose village, Muntinlupa city, Philippines. Fortnightly, adult female Aedes mosquitoes were collected from 50 double-sticky ovitraps (SOs) located in San Jose village for the period June-November 2011. Spatial clustering analysis was performed to identify high and low density clusters of Ae. aegypti and Ae. albopictus mosquitoes. Spatial autocorrelation was assessed by examination of semivariograms, and ordinary kriging was undertaken to create a smoothed surface of predicted vector density in the study area. Our results show that both Ae. aegypti and Ae. albopictus were present in San Jose village during the study period. However, one Aedes species was dominant in a given geographic area at a time, suggesting differing habitat preferences and interspecies competition between vectors. Density maps provide information to direct entomological control activities and advocate the development of geographically enhanced surveillance and control systems to improve DF management in the Philippines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.