Mitotic cells face the challenging tasks of linking kinetochores to growing and shortening microtubules and actively regulating these dynamic attachments to produce accurate chromosome segregation. We report here that Ndc80/Hec1 functions in regulating kinetochore microtubule plus-end dynamics and attachment stability. Microinjection of an antibody to the N terminus of Hec1 suppresses both microtubule detachment and microtubule plus-end polymerization and depolymerization at kinetochores of PtK1 cells. Centromeres become hyperstretched, kinetochore fibers shorten from spindle poles, kinetochore microtubule attachment errors increase, and chromosomes severely mis-segregate. The N terminus of Hec1 is phosphorylated by Aurora B kinase in vitro, and cells expressing N-terminal nonphosphorylatable mutants of Hec1 exhibit an increase in merotelic attachments, hyperstretching of centromeres, and errors in chromosome segregation. These findings reveal a key role for the Hec1 N terminus in controlling dynamic behavior of kinetochore microtubules.
Centromeric chromatin – spindle microtubule interactions mediated by kinetochores drive chromosome segregation. We have developed a two-color fluorescence light microscopy method that measures average label separation, Delta, at < 5 nm accuracy — to elucidate the protein architecture of human metaphase kinetochores. Delta analysis, when correlated with tension states of spindle-attached sister kinetochore pairs, provided information on mechanical properties of protein linkages within kinetochores. Treatment with taxol—which suppresses microtubule dynamics, eliminates tension at kinetochores, and activates the spindle checkpoint—resulted in specific large-scale changes in kinetochore architecture. Cumulatively, Delta analysis revealed compliant linkages close to the centromeric chromatin, suggests a model for how the KMN (KNL1/Mis12 complex/Ndc80 complex) network provides microtubule attachment and generates pulling forces from depolymerization, and reveals architectural changes induced by taxol treatment. The methods described here should also be applicable to other intermediate-scale biological machines in cells.
Although messenger RNA (mRNA) translation is a fundamental biological process, it has never been imaged in real time in vivo with single-molecule precision. To achieve this, we developed nascent chain tracking (NCT), a technique that uses multi-epitope tags and antibody-based fluorescent probes to quantify protein synthesis dynamics at the single-mRNA level. NCT reveals an elongation rate of ~10 amino acids per second, with initiation occurring stochastically every ~30 seconds. Polysomes contain ~1 ribosome every 200 to 900 nucleotides and are globular rather than elongated in shape. By developing multicolor probes, we showed that most polysomes act independently; however, a small fraction (~5%) form complexes in which two distinct mRNAs can be translated simultaneously. The sensitivity and versatility of NCT make it a powerful new tool for quantifying mRNA translation kinetics.
The kinetochore is a control module that both powers and regulates chromosome segregation in mitosis and meiosis. The kinetochore-microtubule interface is remarkably fluid, with the microtubules growing and shrinking at their point of attachment to the kinetochore. Furthermore, the kinetochore itself is highly dynamic, its makeup changing as cells enter mitosis and as it encounters microtubules. Active kinetochores have yet to be isolated or reconstituted, and so the structure remains enigmatic. Nonetheless, recent advances in genetic, bioinformatic and imaging technology mean we are now beginning to understand how kinetochores assemble, bind to microtubules and release them when the connections made are inappropriate, and also how they influence microtubule behaviour. Recent work has begun to elucidate a pathway of kinetochore assembly in animal cells; the work has revealed that many kinetochore components are highly dynamic and that some cycle between kinetochores and spindle poles along microtubules. Further studies of the kinetochore-microtubule interface are illuminating: (1) the role of the Ndc80 complex and components of the Ran-GTPase system in microtubule attachment, force generation and microtubule-dependent inactivation of kinetochore spindle checkpoint activity; (2) the role of chromosomal passenger proteins in the correction of kinetochore attachment errors; and (3) the function of microtubule plus-end tracking proteins, motor depolymerases and other proteins in kinetochore movement on microtubules and movement coupled to microtubule poleward flux.
SummaryPrecise control of the attachment strength between kinetochores and spindle microtubules is essential to preserve genomic stability. Aurora B kinase has been implicated in regulating the stability of kinetochore-microtubule attachments but its relevant kinetochore targets in cells remain unclear. Here, we identify multiple serine residues within the N-terminus of the kinetochore protein Hec1 that are phosphorylated in an Aurora-B-kinase-dependent manner during mitosis. On all identified target sites, Hec1 phosphorylation at kinetochores is high in early mitosis and decreases significantly as chromosomes bi-orient. Furthermore, once dephosphorylated, Hec1 is not highly rephosphorylated in response to loss of kinetochore-microtubule attachment or tension. We find that a subpopulation of Aurora B kinase remains localized at the outer kinetochore even upon Hec1 dephosphorylation, suggesting that Hec1 phosphorylation by Aurora B might not be regulated wholly by spatial positioning of the kinase. Our results define a role for Hec1 phosphorylation in kinetochore-microtubule destabilization and error correction in early mitosis and for Hec1 dephosphorylation in maintaining stable attachments in late mitosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.