Pharmacological activation of the STING (stimulator of interferon genes)–controlled innate immune pathway is a promising therapeutic strategy for cancer. Here we report the identification of MSA-2, an orally available non-nucleotide human STING agonist. In syngeneic mouse tumor models, subcutaneous and oral MSA-2 regimens were well tolerated and stimulated interferon-β secretion in tumors, induced tumor regression with durable antitumor immunity, and synergized with anti–PD-1 therapy. Experimental and theoretical analyses showed that MSA-2 exists as interconverting monomers and dimers in solution, but only dimers bind and activate STING. This model was validated by using synthetic covalent MSA-2 dimers, which were potent agonists. Cellular potency of MSA-2 increased upon extracellular acidification, which mimics the tumor microenvironment. These properties appear to underpin the favorable activity and tolerability profiles of effective systemic administration of MSA-2.
RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors.
Stereochemically and structurally complex cyclic dinucleotide-based stimulator of interferon genes (STING) agonists were designed and synthesized to access a previously unexplored chemical space. The assessment of biochemical affinity and cellular potency, along with computational, structural, and biophysical characterization, was applied to influence the design and optimization of novel STING agonists, resulting in the discovery of MK-1454 as a molecule with appropriate properties for clinical development. When administered intratumorally to immune-competent mice-bearing syngeneic tumors, MK-1454 exhibited robust tumor cytokine upregulation and effective antitumor activity. Tumor shrinkage in mouse models that are intrinsically resistant to single-agent therapy was further enhanced when treating the animals with MK-1454 in combination with a fully murinized antimouse PD-1 antibody, mDX400. These data support the development of STING agonists in combination with pembrolizumab (humanized anti-PD-1 antibody) for patients with tumors that are partially responsive or nonresponsive to singleagent anti-PD-1 therapy.
The leucine-rich repeat kinase 2 (LRRK2) protein has been genetically and functionally linked to Parkinson’s disease (PD), a disabling and progressive neurodegenerative disorder whose current therapies are limited in scope and efficacy. In this report, we describe a rigorous hit-to-lead optimization campaign supported by structural enablement, which culminated in the discovery of brain-penetrant, candidate-quality molecules as represented by compounds 22 and 24. These compounds exhibit remarkable selectivity against the kinome and offer good oral bioavailability and low projected human doses. Furthermore, they showcase the implementation of stereochemical design elements that serve to enable a potency- and selectivity-enhancing increase in polarity and hydrogen bond donor (HBD) count while maintaining a central nervous system-friendly profile typified by low levels of transporter-mediated efflux and encouraging brain penetration in preclinical models.
Reversible janus associated kinase (JAK) inhibitors such as tofacitinib and decernotinib block cytokine signaling and are efficacious in treating autoimmune diseases. However, therapeutic doses are limited due to inhibition of other JAK/signal transducer and activator of transcription pathways associated with hematopoiesis, lipid biogenesis, infection, and immune responses. A selective JAK3 inhibitor may have a better therapeutic index; however, until recently, no compounds have been described that maintain JAK3 selectivity in cells, as well as against the kinome, with good physicochemical properties to test the JAK3 hypothesis in vivo. To quantify the biochemical basis for JAK isozyme selectivity, we determined that the apparent value for each JAK isozyme ranged from 31.8 to 2.9M for JAK1 and JAK3, respectively. To confirm compound activity in cells, we developed a novel enzyme complementation assay that read activity of single JAK isozymes in a cellular context. Reversible JAK3 inhibitors cannot achieve sufficient selectivity against other isozymes in the cellular context due to inherent differences in enzyme ATP values. Therefore, we developed irreversible JAK3 compounds that are potent and highly selective in vitro in cells and against the kinome. Compound 2, a potent inhibitor of JAK3 (0.15 nM) was 4300-fold selective for JAK3 over JAK1 in enzyme assays, 67-fold [interleukin (IL)-2 versus IL-6] or 140-fold [IL-2 versus erythropoietin or granulocyte-macrophage colony-stimulating factor (GMCSF)] selective in cellular reporter assays and>35-fold selective in human peripheral blood mononuclear cell assays (IL-7 versus IL-6 or GMCSF). In vivo, selective JAK3 inhibition was sufficient to block the development of inflammation in a rat model of rheumatoid arthritis, while sparing hematopoiesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.