Over the past two decades, the classical understanding of steroid action has been updated to include rapid, membrane-initiated, neurotransmitter-like functions. While steroids were known to function on very short time spans to induce physiological and behavioral changes, the mechanisms by which these changes occur are now becoming more clear. In avian systems, rapid estradiol effects can be mediated via local alterations in aromatase activity, which precisely regulates the temporal and spatial availability of estrogens. Acute regulation of brain-derived estrogens has been shown to rapidly affect sensorimotor function and sexual motivation in birds. In rodents, estrogens and progesterone are critical for reproduction, including preovulatory events and female sexual receptivity. Membrane progesterone receptor as well as classical progesterone receptor trafficked to the membrane mediate reproductive-related hypothalamic physiology, via second messenger systems with dopamine-induced cell signals. In addition to these relatively rapid actions, estrogen membrane-initiated signaling elicits changes in morphology. In the arcuate nucleus of the hypothalamus, these changes are needed for lordosis behavior. Recent evidence also demonstrates that membrane glucocorticoid receptor is present in numerous cell types and species, including mammals. Further, membrane glucocorticoid receptor influences glucocorticoid receptor translocation to the nucleus effecting transcriptional activity. The studies presented here underscore the evidence that steroids behave like neurotransmitters to regulate CNS functions. In the future, we hope to fully characterize steroid receptor-specific functions in the brain. IntroductionAt one time, the actions of steroid hormones were thought to mediate physiological changes through changes in gene transcription over an extended time course. This incomplete picture of steroid action has been filled in by the additional understanding that these compounds can have rapid, extragenomic, membrane-initiated actions. It has been known for decades that steroid hormones can have acute actions (within minutes) on physiology (Szego and Davis, 1967), the activity of neurons (Kelly et al., 1976), and the expression of behavior (Hayden-Hixson and Ferris, 1991). More recently, data demonstrate that steroids can and do function in ways that are "neurotransmitter-like," as they are synthesized at precise spatial locations within neural circuits and can act within minutes as local neuromodulators to rapidly regulate cognitive functions and behaviors (Balthazart and Ball,
Men and women often experience different symptoms or rates of occurrence for a variety of mood disorders. Many of the symptoms of mood disorders overlap with autoimmune disorders, which also have a higher prevalence in women. There is a growing interest in exploring the immune system to provide biomarkers for diagnosis of mood disorders, along with new targets for developing treatments. This review examines known sex differences in the immune system and their relationship to mood disorders. We focus on immune alterations associated with unipolar depression, bipolar depression, and anxiety disorders. We describe work from both basic and clinical research examining potential immune mechanisms thought to contribute to stress susceptibility and associated mood disorders. We propose that sex and age are important, intertwined factors that need to be included in future experimental designs if we are going to harness the power of the immune system to develop a new wave of treatments for mood disorders.
In parallel with their well-characterized delayed genomic effects, steroid hormones exhibit rapid, non-genomic effects at molecular, cellular and behavioral levels. We have proposed a model of rapid, non-genomic glucocorticoid inhibition of hypothalamic neuroendocrine cells through a putative membrane-associated glucocorticoid receptor (GR). Here we tested for plasma membrane GR immunoreactivity and binding in the hypothalamic supraoptic and paraventricular nuclei. Selective cross-linking of membrane proteins with membrane-impermeant BS3 and subsequent Western blot analysis with a monoclonal GR antibody revealed a reduction in the intensities of a ~98 kDa immunoreactive band and a ~64 kDa band in the rat paraventricular and supraoptic nuclei, and of a 64 kDa band in hippocampal tissue, which suggested that these proteins are associated with the membrane. Saturation binding of [3H]-corticosterone and [3H]-dexamethasone in rat and mouse hypothalamic tissue revealed a Kd 4–24-fold lower and a Bmax 4–7-fold lower for the membrane-associated GR compared to the intracellular GR, suggesting a lower affinity and abundance of the glucocorticoid binding sites in the membrane than in the cytosol. Together, these findings suggest the presence of a low-affinity, low-abundance membrane-associated GR in the hypothalamus that shares homology with the intracellular GR, and are consistent with physiological evidence of rapid, non-genomic glucocorticoid actions in hypothalamic neuroendocrine cells that are GR dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.