Cataractogenesis is a complication of radiotherapy when the eye is included in the treatment field. Low doses of densely ionizing space radiation may also result in an increased risk of cataracts in astronauts. We previously reported that estrogen (17-β-estradiol), when administered to ovariectomized rats commencing 1 week before γ irradiation of the eye and continuously thereafter, results in a significant increase in the rate and incidence of cataract formation and a decreased latent period compared to an ovariectomized control group. We therefore concluded that estrogen accelerates progression of radiation-induced opacification. We now show that estrogen, if administered continuously, but commencing after irradiation, protects against radiation cataractogenesis. Both the rate of progression and incidence of cataracts were greatly reduced in ovariectomized rats that received estrogen treatment after irradiation compared to ovariectomized rats. As in our previous study, estradiol administered 1 week prior to irradiation at the time of ovariectomy and throughout the period of observation produced an enhanced rate of cataract progression. Estrogen administered for only 1 week prior to irradiation had no effect on the rate of progression but resulted in a slight reduction in the incidence. We conclude that estrogen may enhance or protect against radiation cataractogenesis, depending on when it is administered relative to the time of irradiation, and may differentially modulate the initiation and progression phases of cataractogenesis. These data have important implications for astronauts and radiotherapy patients.
Radiation cataractogenesis is an important consideration for radiotherapy patients and for astronauts. Data in the literature suggest that gender and/or estrogen may play a role in the incidence of age-related cataracts. However, few data exist on the effect of gender on radiation-induced cataractogenesis. We compared the incidence and rate of progression of cataracts induced by ionizing radiation in male and female Sprague-Dawley rats. Male rats were implanted with either an empty silastic capsule or a capsule containing 17-beta-estradiol. Ovary-intact female rats were implanted with empty capsules. All rats received a single dose of 10 Gy (60Co gamma rays) to the right eye only. Lens opacification was measured at 2-4-week intervals with a slit lamp. The incidence of radiation-induced cataracts was significantly increased in male rats compared to female rats (P=0.034). There was no difference in the rate of cataract progression between the three groups. Our data suggest there is a gender-related difference in radiation-induced cataractogenesis, but the increased incidence of radiation cataractogenesis in male rats compared to female rats cannot be attributed to estrogen levels, since there was no difference in cataract incidence between male rats implanted with empty capsules and those implanted with capsules containing 17-beta-estradiol.
Thermal radiosensitization is believed to be mediated by an inhibition of double-strand break (DSB) repair, but the exact mechanism of radiosensitization remains to be elucidated. Previously, we demonstrated that proteins of the Mre11/Rad50/Nbs1 complex (MRN) translocate from the nucleus to the cytoplasm in cells have that been heated or heated and then irradiated; this finding led us to propose that heat radiosensitization was due at least in part to translocation of MRN. In the current study, we used leptomycin B to inhibit MRN translocation in heated, irradiated cells, but we found that heat radiosensitization was not altered. Thus enhanced radiosensitivity was not attributed to translocation of MRN proteins. To determine which of the MRN subunits contributed to heat radiosensitization, we compared the extent of heat radiosensitization in wild-type cells with that of cells hypomorphic for Mre11 or Nbs1 or cells in which the level of Rad50 was suppressed. We found that neither Nbs1 nor Rad50 is involved in heat radiosensitization, because a similar amount of heat radiosensitization was observed in cells deficient in those proteins compared to cells expressing normal levels. However, heat radiosensitization was not observed in A-TLD1 cells deficient in Mre11. Measurement of exonuclease activity of purified Mre11 heated at 42.5°C or 45.5°C indicated that the protein is very heat-labile. Immunoprecipitation of Mre11 from heated HeLa cells also revealed that hsp70 associates with Mre11 and that this association is maintained long after heating. Taken together, these findings implicate Mre11 as a target for heat radiosensitization and suggest that heat radiosensitization and inhibition of DSB repair may be mediated by heat-induced conformational changes in Mre11.
Ovarian hormones enhance radiation-induced cataract formation; hormone supplementation experiments indicate that estrogen is responsible for this effect. The data suggest that the enhancing effect of estradiol is not mediated by its receptor, but this requires further study.
Astronauts participating in extended lunar missions or the projected mission to Mars would likely be exposed to significant doses of high-linear energy transfer (LET) heavy energetic charged (HZE) particles. Exposure to even relatively low doses of such space radiation may result in a reduced latent period for and an increased incidence of lens opacification. However, the determinants of cataractogenesis induced by densely ionizing radiation have not been clearly elucidated. In the current study, we show that age at the time of exposure is a key determinant of cataractogenesis in rats whose eyes have been exposed to 2 Gy of (56)Fe ions. The rate of progression of cataractogenesis was significantly greater in the irradiated eyes of 1-year-old rats compared to young (56-day-old) rats. Furthermore, older ovariectomized rats that received exogenous estrogen treatment (17-β-estradiol) commencing 1 week prior to irradiation and continuing throughout the period of observation of up to approximately 600 days after irradiation showed an increased incidence of cataracts and faster progression of opacification compared to intact rats with endogenous estrogen or ovariectomized rats. The same potentiating effect (higher incidence, reduced latent period) was observed for irradiated eyes of young rats. Modulation of estrogen status in the 1-year-old animals (e.g., removal of estrogen by ovariectomy or continuous exposure to estrogen) did not increase the latent period or reduce the incidence to that of intact 56-day-old rats. Since the rapid onset and progression of cataracts in 1-year-old compared to 56-day-old rats was independent of estrogen status, we conclude that estrogen cannot account for the age-dependent differences in cataractogenesis induced by high-LET radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.