Microfabricated devices are useful tools for manipulating and interrogating large numbers of single cells in a rapid and cost-effective manner, but connecting these systems to the existing platforms used in routine high-throughput screening of libraries of cells remains challenging. Methods to sort individual cells of interest from custom microscale devices to standardized culture dishes in an efficient and automated manner without affecting the viability of the cells are critical. Combining a commercially available instrument for colony picking (CellCelector, AVISO GmbH) and a customized software module, we have established an optimized process for the automated retrieval of individual antibody-producing cells, secreting desirable antibodies, from dense arrays of subnanoliter containers. The selection of cells for retrieval is guided by data obtained from a high-throughput, single-cell screening method called microengraving. Using this system, 100 clones from a mixed population of two cell lines secreting different antibodies (12CA5 and HYB099-01) were sorted with 100% accuracy (50 clones of each) in approximately 2 h, and the cells retained viability.
Molecular analysis of rare single cells like circulating tumor cells (CTCs) from whole blood patient samples bears multiple challenges. One of those challenges is the efficient and ideally loss-free isolation of CTCs over contaminating white and red blood cells. While there is a multitude of commercial and non-commercial systems available for the enrichment of CTCs their cell output does not deliver the purity most molecular analysis methods require. Here we describe the ALS CellCelector™ which can solve this challenge allowing the retrieval of 100% pure single CTCs from blood processed by different upstream enrichment techniques. It is a multifunctional, extremely flexible system for automated screening of cell culture plates, Petri dishes, and microscope slides. Fixed or live single cells or multicellular clusters detected during screening can be picked out of those plates automatically. The complete scan and picking process is fully documented hence allowing highest standardization and reproducibility of all processes. Use of CellCelector allowed the isolation of pure single tumor cells or clusters from liquid biopsies of breast, prostate, ovarian, colorectal, lung, and brain cancers for their subsequent molecular analysis. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
The ability of pluripotent stem cells to differentiate into specialized cells of all three germ layers, their capability to self-renew, and their amenability to genetic modification provide fascinating prospects for the generation of cell lines for biomedical applications. Therefore, stem cells must increasingly suffice in terms of industrial standards, and automation of critical or time-consuming steps becomes a fundamental prerequisite for their routine application. Cumbersome manual picking of individual stem cell colonies still represents the most frequently used method for passaging or derivation of clonal stem cell lines. Here, we explore an automated harvesting system (CellCelector™) for detection, isolation, and propagation of human embryonic stem cells (hESCs) and murine induced pluripotent stem cells (iPSCs). Automatically transferred hESC colonies maintained their specific biological characteristics even after repeated passaging. We also selected and harvested primary iPSCs derived from mouse embryonic fibroblasts expressing the green fluorescent protein (GFP) under the control of the Oct4 promotor using either morphological criteria or GFP fluorescence. About 80% of the selected and harvested primary iPSC colonies gave rise to homogenously GFP-expressing iPSC lines. To validate the iPSC lines, we analyzed the expression of pluripotency-associated markers and multi-germ layer differentiation potential in vitro. Our data indicate that the CellCelector™ technology enables efficient identification and isolation of pluripotent stem cell colonies at the phase contrast or fluorescence level.
Spheroids have become essential building blocks for biofabrication of functional tissues. Spheroid formats allow high cell-densities to be efficiently engineered into tissue structures closely resembling the native tissues. In this work, we explore the assembly capacity of cartilaginous spheroids (d ∼ 150 µm) in the context of endochondral bone formation. The fusion capacity of spheroids at various degrees of differentiation was investigated and showed decreased kinetics as well as remodeling capacity with increased spheroid maturity. Subsequently, design considerations regarding the dimensions of engineered spheroid-based cartilaginous mesotissues were explored for the corresponding time points, defining critical dimensions for these type of tissues as they progressively mature. Next, mesotissue assemblies were implanted subcutaneously in order to investigate the influence of spheroid fusion parameters on endochondral ossification. Moreover, as a step towards industrialization, we demonstrated a novel automated image-guided robotics process, based on targeting and registering single-spheroids, covering the range of spheroid and mesotissue dimensions investigated in this work. This work highlights a robust and automated high-precision biomanufacturing roadmap for producing spheroid-based implants for bone regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.