Abstract. A new comprehensive data collection by Damboldt and Suessmann (2012a) with monthly foF2 and M(3000)F2 median values is an excellent basis for the derivation of long-term trends in the ionospheric F2 region. Ionospheric trends have been derived only for stations with data series of at least 22 years (124 stations with foF2 data and 113 stations with M(3000)F2 data) using a twofold regression analysis depending on solar and geomagnetic activity. Three main results have been derived: Firstly, it could be shown that the solar 10.7 cm radio flux F10.7 is a better index for the description of the solar activity than the relative solar sunspot number R as well as the solar EUV proxy E10.7. Secondly, the global mean foF2 and hmF2 trends derived for the interval between 1948 and 2006 are in surprisingly good agreement with model calculations of an increasing atmospheric greenhouse effect (Rishbeth and Roble, 1992). Thirdly, during the years 2007 until 2009, the hmF2 values and to a smaller amount the foF2 values strongly decrease. The reason for this effect is a reduction of the thermospheric density and ionization due to a markedly reduced solar EUV irradiation and extremely small geomagnetic activity during the solar cycle 23/24 minimum.
Ionospheric disturbances, often associated with geomagnetic storms, may cause threats to radio systems used for communication and navigation. One example is the super storm on 20 November 2003, when plenty of strong and unusual perturbations were reported. This paper reveals additional information on the dynamics in the high‐latitude ionosphere over Europe during this storm. Here analyses of wavelike traveling ionospheric disturbances (TIDs) over Europe are presented, based on estimates of the total electron content (TEC) derived from ground‐based Global Navigation Satellite System (GNSS) measurements. These TIDs are ionospheric signatures of thermospheric surges initiated by space weather events. The source region of these TIDs is characterized by enhanced spatial gradients, TEC depression, strong uplift of the F2 layer, the vicinity of the eastward auroral electrojet, and strong aurora E layers. Joule heating is identified as the most probable driver for the TIDs observed over Europe during 20 November 2003. The sudden heating of the thermosphere leads to strong changes in the pressure and thermospheric wind circulation system, which in turn generates thermospheric wind surges observed as TID signatures in the TEC. Either the dissipation of the eastward auroral electrojet or particle precipitation are considered as the source mechanism for the Joule heating. In the course of the storm, the TEC observations show a southward shift of the source region of the TIDs. These meridional dislocation effects are obviously related to a strong compression of the plasmasphere. The presented results demonstrate the complex interaction processes in the thermosphere‐ionosphere‐magnetosphere system during this extreme storm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.