Optical modulators encode electrical signals to the optical domain and thus constitute a key element in high-capacity communication links 1,2 . Ideally, they should feature operation at the highest speed with the least power consumption on the smallest footprint, and at low cost 3 . Unfortunately, current technologies fall short of these criteria 4 . Recently, plasmonics has emerged as a solution offering compact and fast devices 5-7 . Yet, practical implementations have turned out to be rather elusive.Here, we introduce a 70 GHz all-plasmonic Mach-Zehnder modulator that fits into a silicon waveguide of 10 μm length. This dramatic reduction in size by more than two orders of magnitude compared with photonic Mach-Zehnder modulators results in a low energy consumption of 25 fJ per bit up to the highest speeds. The technology suggests a cheap co-integration with electronics.Mach-Zehnder modulators (MZMs) are the most versatile electro-optical converters in high-end communication systems. MZMs are unique, as they can be used to encode multiple bits within one symbol with the highest quality. They are thus instrumental in increasing the capacity of modern communication links 1 . Until now, MZMs have mostly been based on the lithium niobate material system, which requires footprints on the order of cm 2 . Recently, more compact silicon-based modulators have emerged. These devices have already shown operation at bandwidths up to 55 GHz (ref. 8), they are cost-effective, and they feature lengths on the order of hundreds of micrometres to millimetres 2,3,8-12 . Yet, complementary metal-oxide semiconductor electronics (CMOS) house hundreds of transistors on a single μm 2 , making a co-integration of today's silicon MZMs with CMOS electronics impractical 4 . In pursuit of more compact silicon modulators, various approaches have been demonstrated, such as resonant silicon ring modulators 13,14 or germanium-based electro-absorption modulators 15,16 . However, encoding advanced modulation formats is challenging 17 , and high-capacity transmission has, so far, only been achieved with MZMs 2,12 . Instead, plasmonics has drawn significant interest as an alternative solution 6,7 . In plasmonics, optical signals are converted to surface plasmon polaritons (SPPs) propagating at metal-dielectric interfaces, where they can be confined below the diffraction limit of optics 18 . This means that plasmonic devices require only a few µm 2 of footprint 19,20 . With such reduced dimensions, the technology is much closer to bridging the size gap with respect to CMOS electronics. Furthermore, there are various theoretical studies indicating that plasmonic MZMs should offer hundreds of gigahertz of bandwidth 5,21 . To date, however, there is very little experimental evidence to support this claim. Recently, a plasmonic phase modulator demonstrated operation at 40 Gbit s −1 (ref. 22). One could now envision integrating such plasmonic phase modulators into a silicon waveguide MZM configuration. However, by combining plasmonics and silicon photoni...
To optimize the interaction between chiral matter and highly twisted light, quantities that can help characterize chiral electromagnetic fields near nanostructures are needed. Here, by analogy with Poynting's theorem, we formulate the time-averaged conservation law of optical chirality in lossy dispersive media and identify the optical chirality flux as an ideal far-field observable for characterizing chiral optical near fields. Bounded by the conservation law, we show that it provides precise information, unavailable from circular dichroism spectroscopy, on the magnitude and handedness of highly twisted fields near nanostructures.
The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level.
Extinction cross-section spectra of split-ring-resonator dimers have been measured at near-infrared frequencies with a sensitive spatial modulation technique. The resonance frequency of the dimer's coupled mode as well as its extinction cross-section and its quality factor depend on the relative orientation and separation of the two split-ring resonators. The findings can be interpreted in terms of electric and magnetic dipole-dipole interaction. Numerical calculations based on a Discontinuous Galerkin Time-Domain approach are in good agreement with the experiments and support our physical interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.