Natural killer (NK) cells are key immune cells engaged in fighting infection and malignant transformation. In this study, we found that canine NK cell-derived exosomes (NK-exosomes) separated from activated cytotoxic NK cell supernatants express specific markers including CD63, CD81, Alix, HSP70, TSG101, Perforin 1, and Granzyme B. We examined the antitumor effects of NK-exosomes in an experimental murine mammary tumor model using REM134 canine mammary carcinoma cell line. We observed changes in tumor size, tumor initiation, progression, and recurrence-related markers in the control, tumor group, and NK-exosome-treated tumor group. We found that the tumor size in the NK-exosome-treated tumor group decreased compared with that of the tumor group in the REM134-driven tumorigenic mouse model. We observed significant changes including the expression of tumorigenesis-related markers, such as B cell-specific Moloney murine leukemia virus insertion site 1 (Bmi-1), vascular endothelial growth factor (VEGF), matrix metallopeptidase-3 (MMP-3), interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), multidrug resistance protein (MDR), tumor suppressor protein p53 (p53), proliferating cell nuclear antigen (PCNA), and the apoptotic markers, B cell lymphoma-2 associated X (Bax) and B cell lymphoma-extra large (Bcl-xL) belonging to the Bcl-2 family, in the tumor group compared with those in the control group. The expression of CD133, a potent cancer stem cell marker, was significantly higher than that of the control. By contrast, the NK-exosome-treated tumor group exhibited a significant reduction in Bmi-1, MMP-3, IL-1β, IL-6, TNF-α, Bax, Bcl-xL, and PCNA expression compared with that in the tumor group. Furthermore, the expression of CD133, which mediates tumorigenesis, was significantly decreased in the NK-exosome-treated tumor group compared with that in the tumor group. These findings indicate that canine NK-exosomes represent a promising therapeutic tool against canine solid tumors, including mammary carcinoma.