Estimates of species' vital rates and an understanding of the factors affecting those parameters over time and space can provide crucial information for management and conservation. We used mark-recapture, reproductive output, and territory occupancy data collected during 1985-2013 to evaluate population processes of Northern Spotted Owls (Strix occidentalis caurina) in 11 study areas in Washington, Oregon, and northern California, USA. We estimated apparent survival, fecundity, recruitment, rate of population change, and local extinction and colonization rates, and investigated relationships between these parameters and the amount of suitable habitat, local and regional variation in meteorological conditions, and competition with Barred Owls (Strix varia). Data were analyzed for each area separately and in a meta-analysis of all areas combined, following a strict protocol for data collection, preparation, and analysis. We used mixed effects linear models for analyses of fecundity, Cormack-Jolly-Seber open population models for analyses of apparent annual survival (/), and a reparameterization of the Jolly-Seber capture-recapture model (i.e. reverse Jolly-Seber; RJS) to estimate annual rates of population change (k RJS ) and recruitment. We also modeled territory occupancy dynamics of Northern Spotted Owls and Barred Owls in each study area using 2-species occupancy models. Estimated mean annual rates of population change (k) suggested that Spotted Owl populations declined from 1.2% to 8.4% per year depending on the study area. The weighted mean estimate of k for all study areas was 0.962 (6 0.019 SE; 95% CI: 0.925-0.999), indicating an estimated range-wide decline of 3.8% per year from 1985 to 2013. Variation in recruitment rates across the range of the Spotted Owl was best explained by an interaction between total winter precipitation and mean minimum winter temperature. Thus, recruitment rates were highest when both total precipitation (29 cm) and minimum winter temperature (À9.58C) were lowest. Barred Owl presence was associated with increased local extinction rates of Spotted Owl pairs for all 11 study areas. Habitat covariates were related to extinction rates for Spotted Owl pairs in 8 of 11 study areas, and a greater amount of suitable owl habitat was generally associated with decreased extinction rates. We observed negative effects of Barred Owl presence on colonization rates of Spotted Owl pairs in 5 of 11 study areas. The total amount of suitable Spotted Owl habitat was positively associated with colonization rates in 5 areas, and more habitat disturbance was associated with lower colonization rates in 2 areas. We observed strong declines in derived estimates of occupancy in all study areas. Mean fecundity of females was highest for adults (0.309 6 0.027 SE), intermediate for 2-yr-olds (0.179 6 0.040 SE), and lowest for 1-yr-olds (0.065 6 0.022 SE). The presence of Barred Owls and habitat covariates explained little of the temporal variation in fecundity in most study areas. Climate covariates ...
Ecological disturbances shape and maintain natural communities, but climate change and human land use can alter disturbance regimes and affect population persistence and vital rates in unpredictable ways. Species inhabiting landscapes shaped by wildfire have evolved mechanisms allowing them to persist under this dynamic disturbance type, which creates habitats of varying quality for these species. We utilized data from a 26-yr demographic study of northern spotted owls to analyze the influence of wildfire on apparent survival and recruitment rates. Wildfires occurred across different years and affected different spotted owl territories, which allowed us to implement a retrospective Before-After-Control-Impact (BACI) analysis and model the potential effect of wildfire extent and severity. Our results indicated that mixed-severity fires that burned at predominantly low-severity had little effect on survival and recruitment while fires characterized by more medium to high burn severities negatively affected spotted owl survival, with varying effects on recruitment. Reduced survival and increased recruitment rates on some territories affected by medium to high severity fires suggested that post-fire habitat quality was reduced resulting in territories that were marginally capable of supporting owls. We hypothesize these territories may have represented "sinks" that were supported by nearby "source" territories in a spatially heterogeneous landscape created by the mixed-severity fire regime of the region.
Slow ecological processes challenge conservation. Short‐term variability can obscure the importance of slower processes that may ultimately determine the state of a system. Furthermore, management actions with slow responses can be hard to justify. One response to slow processes is to explicitly concentrate analysis on state dynamics. Here, we focus on identifying drivers of Northern Spotted Owl (Strix occidentalis caurina) territorial occupancy dynamics across 11 study areas spanning their geographic range and forecasting response to potential management actions. Competition with Barred Owls (Strix varia) has increased Spotted Owl territory extinction probabilities across all study areas and driven recent declines in Spotted Owl populations. Without management intervention, the Northern Spotted Owl subspecies will be extirpated from parts of its current range within decades. In the short term, Barred Owl removal can be effective. Over longer time spans, however, maintaining or improving habitat conditions can help promote the persistence of northern spotted owl populations. In most study areas, habitat effects on expected Northern Spotted Owl territorial occupancy are actually greater than the effects of competition from Barred Owls. This study suggests how intensive management actions (removal of a competitor) with rapid results can complement a slower management action (i.e., promoting forest succession).
Many bird species do not make their own nests; therefore, selection of existing sites that provide adequate microclimates is critical. This is particularly true for owls in north temperate climates that often nest early in the year when inclement weather is common. Spotted owls use three main types of nest structures, each of which are structurally distinct and may provide varying levels of protection to the eggs or young. We tested the hypothesis that spotted owl nest configuration influences nest microclimate using both experimental and observational data. We used a wind tunnel to estimate the convective heat transfer coefficient (hc) of eggs in 25 potential nest configurations that mimicked 2 nest types (top-cavity and platform nests), at 3 different wind speeds. We then used the estimates of hc in a biophysical heat transfer model to estimate how long it would take unattended eggs to cool from incubation temperature (∼36°C) to physiological zero temperature (PZT; ∼26°C) under natural environmental conditions. Our results indicated that the structural configuration of nests influences the cooling time of the eggs inside those nests, and hence, influences the nest microclimate. Estimates of time to PZT ranged from 10.6 minutes to 33.3 minutes. Nest configurations that were most similar to platform nests always had the fastest egg cooling times, suggesting that platform nests were the least protective of those nests we tested. Our field data coupled with our experimental results suggested that nest choice is important for the reproductive success of owls during years of inclement weather or in regions characterized by inclement weather during the nesting season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.