Adaptive Monte Carlo methods are very efficient techniques designed to tune simulation estimators on-line. In this work, we present an alternative to stochastic approximation to tune the optimal change of measure in the context of importance sampling for normal random vectors. Unlike stochastic approximation, which requires very fine tuning in practice, we propose to use sample average approximation and deterministic optimization techniques to devise a robust and fully automatic variance reduction methodology. The same samples are used in the sample optimization of the importance sampling parameter and in the Monte Carlo computation of the expectation of interest with the optimal measure computed in the previous step. We prove that this highly dependent Monte Carlo estimator is convergent and satisfies a central limit theorem with the optimal limiting variance. Numerical experiments confirm the performance of this estimator: in comparison with the crude Monte Carlo method, the computation time needed to achieve a given precision is divided by a factor between 3 and 15.Comment: Published in at http://dx.doi.org/10.1214/09-AAP595 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
Abstract. In this paper, we are interested in the almost sure convergence of randomly truncated stochastic algorithms. In their pioneer work, Chen and Zhu (1986) required that the family of the noise terms is summable to ensure the convergence. In our paper, we present a new convergence theorem which extends the already known results by making vanish this condition on the noise terms -a condition which is quite hard to check in practice. The aim of this work is to prove an almost sure convergence result of randomly truncated stochastic algorithms under easily verifiable conditions (see Theorem 1).
In this article, we are interested in the behaviour of a single ferromagnetic mono-domain particle submitted to an external field with a stochastic perturbation. This model is the first step toward the mathematical understanding of thermal effects on a ferromagnet. In a first part, we present the stochastic model and prove that the associated stochastic differential equation is well defined. The second part is dedicated to the study of the long time behaviour of the magnetic moment and in the third part we prove that the stochastic perturbation induces a non reversibility phenomenon. Last, we illustrate these results through numerical simulations of our stochastic model. The main results presented in this article are on the one hand the rate of convergence of the magnetization toward the unique stable equilibrium of the deterministic model and on the other hand a sharp estimate of the hysteresis phenomenon induced by the stochastic perturbation (remember that with no perturbation, the magnetic moment remains constant).
In this article, we study a double barrier version of the standard Parisian options. We give closed formulas for the Laplace transforms of their prices with respect to the maturity time. We explain how to invert them numerically and prove a result on the accuracy of the numerical inversion when the function to be recovered is sufficiently smooth. Henceforth, we study the regularity of the Parisian option prices with respect to maturity time and prove that except for particular values of the barriers, the prices are of class C ∞ (see Theorem 5.1). This study heavily relies on the existence of a density for the Parisian times, so we have deeply investigated the existence and the regularity of the density for the Parisian times (see Theorem 5.4).
In this work, we propose a smart idea to couple importance sampling and Multilevel Monte Carlo (MLMC). We advocate a per level approach with as many importance sampling parameters as the number of levels, which enables us to handle the different levels independently. The search for parameters is carried out using sample average approximation, which basically consists in applying deterministic optimisation techniques to a Monte Carlo approximation rather than resorting to stochastic approximation. Our innovative estimator leads to a robust and efficient procedure reducing both the discretization error (the bias) and the variance for a given computational effort. In the setting of discretized diffusions, we prove that our estimator satisfies a strong law of large numbers and a central limit theorem with optimal limiting variance, in the sense that this is the variance achieved by the best importance sampling measure (among the class of changes we consider), which is however non tractable. Finally, we illustrate the efficiency of our method on several numerical challenges coming from quantitative finance and show that it outperforms the standard MLMC estimator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.