BackgroundThe endoplasmic reticulum (ER) is responsible for the control of correct protein folding and protein function which is crucial for cell survival. However, under pathological conditions, such as hypoxia–ischemia (HI), there is an accumulation of unfolded proteins thereby triggering the unfolded protein response (UPR) and causing ER stress which is associated with activation of several stress sensor signaling pathways, one of them being the inositol requiring enzyme-1 alpha (IRE1α) signaling pathway. The UPR is regarded as a potential contributor to neuronal cell death and inflammation after HI. In the present study, we sought to investigate whether microRNA-17 (miR-17), a potential IRE1α ribonuclease (RNase) substrate, arbitrates downregulation of thioredoxin-interacting protein (TXNIP) and consequent NLRP3 inflammasome activation in the immature brain after HI injury and whether inhibition of IRE1α may attenuate inflammation via miR-17/TXNIP regulation.MethodsPostnatal day 10 rat pups (n = 287) were subjected to unilateral carotid artery ligation followed by 2.5 h of hypoxia (8% O2). STF-083010, an IRE1α RNase inhibitor, was intranasally delivered at 1 h post-HI or followed by an additional one administration per day for 2 days. MiR-17-5p mimic or anti-miR-17-5p inhibitor was injected intracerebroventricularly at 48 h before HI. Infarct volume and body weight were used to evaluate the short-term effects while brain weight, gross and microscopic brain tissue morphologies, and neurobehavioral tests were conducted for the long-term evaluation. Western blots, immunofluorescence staining, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), and co-immunoprecipitation (Co-IP) were used for mechanism studies.ResultsEndogenous phosphorylated IRE1α expression was significantly increased after HI. Intranasal administration of STF-083010 alleviated brain injury and improved neurological behavior. MiR-17-5p expression was reduced after HI, and this decrease was attenuated by STF-083010 treatment. MiR-17-5p mimic administration ameliorated TXNIP expression, NLRP3 inflammasome activation, caspase-1 cleavage, and IL-1β production, as well as brain infarct volume. Conversely, anti-miR-17-5p inhibitor reversed IRE1α inhibition-induced decrease in TXNIP expression and inflammasome activation, as well as exacerbated brain injury after HI.ConclusionsIRE1a-induced UPR pathway may contribute to inflammatory activation and brain injury following neonatal HI. IRE1a activation, through decay of miR-17-5p, elevated TXNIP expression to activate NLRP3 inflammasome and aggravated brain damage.Electronic supplementary materialThe online version of this article (10.1186/s12974-018-1077-9) contains supplementary material, which is available to authorized users.
Germinal matrix hemorrhage remains the leading cause of morbidity and mortality in preterm infants in the United States with little progress made in its clinical management. Survivors are often afflicted with long-term neurological sequelae, including cerebral palsy, mental retardation, hydrocephalus, and psychiatric disorders. Blood clots disrupting normal cerebrospinal fluid circulation and absorption after germinal matrix hemorrhage are thought to be important contributors towards post-hemorrhagic hydrocephalus development. We evaluated if upregulating CD36 scavenger receptor expression in microglia and macrophages through PPARγ stimulation, which was effective in experimental adult cerebral hemorrhage models and is being evaluated clinically, will enhance hematoma resolution and ameliorate long-term brain sequelae using a neonatal rat germinal matrix hemorrhage model. PPARγ stimulation (15d-PGJ2) increased short-term PPARγ and CD36 expression levels as well as enhanced hematoma resolution, which was reversed by a PPARγ antagonist (GW9662) and CD36 siRNA. PPARγ stimulation (15d-PGJ2) also reduced long-term white matter loss and post-hemorrhagic ventricular dilation as well as improved neurofunctional outcomes, which were reversed by a PPARγ antagonist (GW9662). PPARγ-induced upregulation of CD36 in macrophages and microglia is, therefore, critical for enhancing hematoma resolution and ameliorating long-term brain sequelae.
Chemerin, an adipokine, has been reported to reduce the production of pro-inflammatory cytokines and neutrophil infiltration. This study investigated the role of Chemerin and its natural receptor, ChemR23, as well as its downstream mediator calmodulin-dependent protein kinase kinase 2 (CAMKK2)/adenosine monophosphate-activated protein kinase (AMPK) /Nuclear factor erythroid 2-related factor 2 (Nrf2) following germinal matrix hemorrhage (GMH) in neonatal rats, with a specific focus on inflammation. GMH was induced by intraparenchymal injection of bacterial collagenase (0.3U) in P7 rat pups. The results demonstrated that human recombinant Chemerin (rh-Chemerin) improved neurological and morphological outcomes after GMH. Rh-Chemerin promoted accumulation and proliferation of M2 microglia in periventricular regions at 72 h. Rh-Chemerin increased phosphorylation of CAMKK2, AMPK and expression of Nrf2, and decreased IL-1beta, IL-6 and TNF-alpha levels. Selective inhibition of ChemR23/CAMKK2/AMPK signaling in microglia via intracerebroventricular delivery of liposome-encapsulated specific ChemR23 (Lipo-alpha-NETA), CAMKK2 (Lipo-STO-609) and AMPK (Lipo-Dorsomorphin) inhibitor increased the expression levels of IL-1beta, IL-6 and TNF- alpha, demonstrating that ChemR23/CAMKK2/AMPK signaling in microglia suppressed inflammatory response after GMH. Cumulatively, these data showed that rh-Chemerin ameliorated GMH-induced inflammatory response by promoting ChemR23/CAMKK2/AMPK/Nrf2 pathway, and M2 microglia may be a major mediator of this effect. Thus, rh-Chemerin can serve as a potential agent to reduce the inflammatory response following GMH.
In addition to being the leading cause of morbidity and mortality in premature infants, germinal matrix hemorrhage (GMH) is also the leading cause of acquired infantile hydrocephalus. The pathophysiology of posthemorrhagic hydrocephalus (PHH) development after GMH is complex and vaguely understood, although evidence suggests fibrosis and gliosis in the periventricular and subarachnoid spaces disrupts normal cerebrospinal fluid (CSF) dynamics. Theories explaining general hydrocephalus etiology have substantially evolved from the original bulk flow theory developed by Dr. Dandy over a century ago. Current clinical and experimental evidence supports a new hydrodynamic theory for hydrocephalus development involving redistribution of vascular pulsations and disruption of Starling forces in the brain microcirculation. In this review, we discuss CSF flow dynamics, history and development of theoretical hydrocephalus pathophysiology, and GMH epidemiology and etiology as it relates to PHH development. We highlight known mechanisms and propose new avenues that will further elucidate GMH pathophysiology, specifically related to hydrocephalus.
Cerebral hemorrhages account for 15–20% of stroke sub-types and have very poor prognoses. The mortality rate for cerebral hemorrhage patients is between 40–50%, of which at least half of the deaths occur within the first two days, and 75% of survivors are incapable of living independently after one year. Current emergency interventions involve lowering blood pressure and reducing intracranial pressure by controlled ventilations or, in the worst case scenarios, surgical intervention. Some hemostatic and coagulatherapeutic interventions are being investigated, although a few that were promising in experimental studies have failed in clinical trials. No significant immunomodulatory intervention, however, exists for clinical management of cerebral hemorrhage. The inflammatory response following cerebral hemorrhage is particularly harmful in the acute stage because blood-brain barrier disruption is amplified and surrounding tissue is destroyed by secreted proteases and reactive oxygen species from infiltrated leukocytes. In this review, we discuss both the destructive and regenerative roles the immune response play following cerebral hemorrhage and focus on microglia, macrophages, and T-lymphocytes as the primary agents directing the response. Microglia, macrophages, and T-lymphocytes each have sub-types that significantly influence the over-arching immune response towards either a pro-inflammatory, destructive, or an anti-inflammatory, regenerative, state. Both pre-clinical and clinical studies of cerebral hemorrhages that selectively target these immune cells are reviewed and we suggest immunomodulatory therapies that reduce inflammation, while augmenting neural repair, will improve overall cerebral hemorrhage outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.