Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion death. We hypothesize that TRALI requires 2 events: (1) the clinical condition of the patient and (2) the infusion of antibodies against MHC class I antigens or the plasma from stored blood. A 2-event rat model was developed with saline (NS) or endotoxin (LPS) as the first event and the infusion of plasma from packed red blood cells (PRBCs) or antibodies (OX18 and OX27) against MHC class I antigens as the second event. ALI was determined by Evans blue dye leak from the plasma to the bronchoalveolar lavage fluid (BALF), protein and CINC-1 concentrations in the BALF, and the lung histology. NS-treated rats did not evidence ALI with any second events, and LPS did not cause ALI. LPS-treated animals demonstrated ALI in response to plasma from stored PRBCs, both prestorage leukoreduced and unmodified, and to OX18 and OX27, all in a concentration-dependent fashion. ALI was neutrophil (PMN) dependent, and OX18/OX27 localized to the PMN surface in vivo and primed the oxidase of rat PMNs. We conclude that TRALI is the result of 2 events with the second events consisting of the plasma from stored blood and antibodies that prime PMNs. IntroductionTransfusion-related acute lung injury (TRALI) is the leading cause of transfusion mortality in the United States. 1,2 TRALI is the acute onset of noncardiogenic pulmonary edema as documented by chest radiograph and profound hypoxemia, in accordance with the definition of acute lung injury (ALI), that occurs within 6 hours of transfusion. 3,4 TRALI may occur with or without conditions that predispose the patient to ALI, and may be the worsening of pulmonary function in patients with preexisting ALI. 3,4 All blood products have been implicated in TRALI, but components that contain large amounts of plasma are mainly responsible. 5,6 The current incidence of TRALI has been estimated as 1/7900 to 1/1330 in the United Kingdom and the United States with lesser incidences in Europe. [5][6][7][8] Current mortality rates vary from 5% to 35% with the lesser mortality rates predominating. [5][6][7][8] The pathophysiology of TRALI has not been elucidated despite numerous studies. [9][10][11][12][13][14] The first mechanism proposed was the infusion of donor antibodies directed against the HLA class I or granulocyte-specific antigens on the recipient's leukocytes with animal models composed of an in vivo murine model and an isolated, perfused rabbit lung that provided physiologic relevance. [9][10][11][12]14 In addition, the neutrophil (PMN) was proposed to be the effector cell, identical to other forms of ALI and the acute respiratory distress syndrome (ARDS). [9][10][11][12]14 However, look-back studies of donors with specific antibodies directed against HLA or granulocyte antigens demonstrated that the infusion of donor antibodies into a recipient that expressed the cognate antigen resulted in TRALI in a minority of these patients, implying that the clinical condition of the recipient may be important for the d...
Mesenchymal stem cells (MSCs) isolated from cadaveric adipose tissue can be obtained in large quantities, and have been reported in the literature to be capable of inducing bone formation in vivo and ex vivo.( 1-6 ) The hypothesis tested whether a demineralized cancellous bone matrix (DCBM) can provide an effective substrate for selection and retention of stem cells derived from the stromal vascular fraction (SVF) of adipose. Human cadaveric adipose tissue was recovered from a donor and digested. The resulting SVF-containing MSCs were seeded onto the demineralized bone allografts, after which the nonadherent cells were washed off. The MSCs were characterized using a flow cytometer and tri-lineage differentiation (osteogenesis, chondrogenesis, and adipogenesis) in vitro. The stem cell-seeded allografts were also characterized for cell number, adherence to the DCBM, osteogenic activity (alkaline phosphatase and Alizarin Red staining), and bone morphorgenic protein (BMP) quantity. Flow cytometry identified a mean total of 7.2% MSCs in SVF and 87.2% MSCs after culture. The stem cells showed the capability of differentiating into bone, cartilage, and fat. On the 21 stem cell-seeded bone allografts, there were consistent, attached, viable cells (100,744±22,762 cells/cube). An assessment of donor age, gender, and body mass index revealed no significant differences in cell numbers. Enzyme-linked immunosorbent assay revealed the presence of BMP-2 and BMP-7. In conclusion, this bone graft contains three key elements for bone regeneration: adhered osteogenic stem cells, 3D osteoconductive bone scaffold, and osteoinductive BMP signal. It therefore has the potential to be effective for bone regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.