Visceral leishmaniasis in humans is a chronic and fatal disease if left untreated. Canine leishmaniasis (CanL) is a severe public health problem because infected animals are powerful transmitters of the parasite to humans via phlebotomine vectors. Therefore, dogs are an essential target for control measures. Progression of canine infection is accompanied by failure of cellular immunity with reduction of circulating lymphocytes and increased cytokines that suppress macrophage function. Studies showed that the regulation of the effector function of macrophages and T cells appears to depend on miRNAs; miRNA-21 (miR-21) shows increased expression in splenic leukocytes of dogs with CanL and targets genes related to the immune response. Mimics and inhibitors of miR-21 were used in vitro to transfect splenic leukocytes from dogs with CanL. After transfection, expression levels of the proteins FAS, FASL, CD69, CCR7, TNF-α, IL-17, IFN-γ, and IL-10 were measured. FAS, FASL, CD69, and CCR7 expression levels decreased in splenic leukocytes from dogs with CanL. The miR-21 mimic decreased CD69 expression in splenic leukocytes from CanL and healthy groups. The miR-21 inhibitor decreased IL-10 levels in culture supernatants from splenic leukocytes in the CanL group. These findings suggest that miR-21 alters the immune response in CanL; therefore, miR-21 could be used as a possible therapeutic target for CanL.
Canine leishmaniasis (CanL) is a severe public health threat. Infected animals mediate transmission of the Leishmania protozoan to humans via the sandfly’s bite during a blood meal. CanL progression depends on the degree of suppression of the immune response, possibly associated with microRNAs (miR), which can modulate mRNA translation into proteins and (consequently) regulate cell function. Increased miR-148a in splenic leukocytes (SL) of dogs with CanL was observed in previous studies, and in silico analysis, identified possible pathways involved in immune response regulation that are affected by this miR. Therefore, we evaluated the involvement of miR-148a in the regulation of TNF-α, IL-6, IL-12, IL-1β, iNOS, MHCII, CD80, CD3, T-bet, and GATA-3 transcription factors and their relationship with parasite load in SL of dogs with CanL. Splenic leukocytes obtained from healthy and diseased dogs were transfected with miR-148a mimic and inhibitor oligonucleotides. After 48 hours, expression levels of MHCII, CD80, iNOS, CD3, T-bet, and GATA-3 were evaluated by flow cytometry, and concentrations of TNF-α, IL-12, IL-6, and IL-1β were measured in culture supernatants by capture enzyme-linked immunosorbent assays. Transfection of SL with miR-148a mimics decreased iNOS levels in cells and TNF-α, IL-6, and IL-12 in the supernatants of cultured SL from CanL dogs. Interestingly, transfection with miR-148a inhibitor decreased parasite load in SL cells. These results suggest a direct or not regulatory role of this miR in the immune response to Leishmania infantum infection. We conclude that miR-148a can modulate immune responses by regulating inflammatory cytokines during CanL. Our results contribute to understanding the complex host/parasite interaction in CanL and could assist the development of treatments.
Canine leishmaniasis (CanL) is a chronic disease caused by Leishmania infantum, and the limitations of the current treatments have encouraged new alternatives, such as the use of immunomodulatory nutrients. The objective of this study was to determine the serum levels of vitamin A (retinol), vitamin D (25(OH)VD3), and zinc (Zn) in dogs with CanL and the effect of in vitro supplementation with the respective active forms ATRA, 1,25(OH)2VD3, and SZn on spleen leukocyte cultures. Serum retinol, 25(OH)VD3, and Zn were determined by HPLC, ELISA, and ICP-MS, respectively. Spleen leukocyte cultures were used for the detection of NO and ROS by flow cytometry; the IFN-γ, TNF-α, and IL-10 levels were determined by ELISA; and the parasite load was determined by microscopy. We detected low serum levels of retinol and Zn and high levels of 25(OH)VD3 in the CanL group. The in vitro supplementation of CanL spleen leukocytes with ATRA, 1,25(OH)2VD3, and SZn, in addition to a soluble leishmania antigen (SLA) treatment, increased the NO and ROS levels, while the treatments with only ATRA and SZn increased the TNF-a levels. Increased IL-10 and IFN-g levels were observed with the addition of SLA to the medium, although the addition of the three nutrients led to a reduction of the IL-10 levels, and the addition of 1,25(OH)2VD3 and SZn led to a reduction of IFN-g. A supplementation with 1,25(OH)2VD3 and SZn reduced the parasite load but only in the absence of SLA. We suggest that the nutrients we tested are involved in the leishmanicidal mechanism, showing a potential for investigation in future studies.
In this study, we evaluated the performance of a new enzyme‐linked immunosorbent assay (ELISA) variant known as indirect “plasmonic ELISA” (pELISA) for the detection of Leishmania spp. infection. Serum samples from 170 dogs from an area where canine leishmaniosis (CanL) is endemic and from 26 healthy dogs from a nonendemic area were tested by indirect pELISA, and the results were compared to those of an indirect ELISA (both with recombinant antigen rK28) and those of an immunochromatographic test (dual‐path platform, TR‐DPP®) using real‐time PCR on blood samples or conjunctival swabs as the gold standard. The pELISA, indirect rK28 ELISA and the TR‐DPP® immunochromatographic test presented sensitivities of 94.7%, 89.5% and 79.0% and specificities of 100%, 92.7% and 91.5%, respectively. The analysis of the results revealed that the specificity of the indirect pELISA was greater than that of the method recommended by the Ministry of Health in Brazil and may increase the feasibility of diagnosis in resource‐constrained countries because it does not require sophisticated instruments to read. Thus, this method can be used as an additional tool for the detection of Leishmania spp. infection in these areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.