3D monolithic integration of logic and memory has been the most sought after solution to surpass the Von Neumann bottleneck, for which a low-temperature processed material system becomes inevitable. Two-dimensional materials, with their excellent electrical properties and low thermal budget are potential candidates. Here, we demonstrate a low-temperature hybrid co-integration of one-transistor-one-resistor memory cell, comprising a surface functionalized 2D WSe2
p-FET, with a solution-processed WSe2 Resistive Random Access Memory. The employed plasma oxidation technique results in a low Schottky barrier height of 25 meV with a mobility of 230 cm2 V−1 s−1, leading to a 100x performance enhanced WSe2
p-FET, while the defective WSe2 Resistive Random Access Memory exhibits a switching energy of 2.6 pJ per bit. Furthermore, guided by our device-circuit modelling, we propose vertically stacked channel FETs for high-density sub-0.01 μm2 memory cells, offering a new beyond-Si solution to enable 3-D embedded memories for future computing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.