Quiet submarine threats and high clutter in the littoral environment increase computation and communication demands on beamforming arrays, particularly for applications that require in-array autonomous operation. By coupling each transducer node in a distributed array with a microprocessor, and networking them together, embedded parallel processing for adaptive beamformers can glean advantages in execution speed, fault tolerance, scalability, power, and cost. In this paper, a novel set of techniques for the parallelization of adaptive beamforming algorithms is introduced for in-array sonar signal processing. A narrowband, unconstrained, Minimum Variance Distortionless Response (MVDR) beamformer is used as a baseline to investigate the efficiency and effectiveness of this method in an experimental fashion. Performance results are also included, among them execution times, parallel efficiencies, and memory requirements, using a distributed system testbed comprised of a cluster of workstations connected by a conventional network.
Applications based on Fast Fourier Transform (FFT) such as signal and image processing require high computational power, plus the ability to choose the algorithm and architecture to implement it. This paper explains the realization of a Split Radix FFT (SRFFT) processor based on a pipeline architecture reported before by the same authors. This architecture has as basic building blocks a Complex Butterfly and a Delay Commutator. The main advantages of this architecture are:• To combine the higher parallelism of the 4r-FFTs and the possibility of processing sequences having length of any power of two.• The simultaneous operation of multipliers and adder-subtracters implicit in the SRFFT, which leads to faster operation at the same degree of pipeline. The implementation has been made on a Field Programmable Gate Array (FPGA) as a way of obtaining high performance at economical price and a short time of realization. The Delay Commutator has been designed to be customized for even and odd SRFFT computation levels. It can be used with segmented arithmetic of any level of pipeline in order to speed up the operating frequency. The processor has been simulated up to 350 MHz, with an EP2S15F672C3 Altera Stratix II as a target device, for a transform length of 256 complex points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.