Pollutants from pig farms in Mexico have caused problems in many surface water reservoirs. Growing concern has driven the search for low-cost wastewater treatment solutions. The objective of this research was to evaluate the potential of an in-series constructed wetland to remove nutrients from wastewater from a pig farm. The wetland system had a horizontal flow that consisted of three cells, the first a surface water wetland, the second a sedimentation cell, and the third a subsurface flow wetland. The vegetation used was Thypa sp. and Scirpus sp. A mix of soil with red volcanic rock (10–30 mm diameter) and yellow sand (2–8 mm diameter) was used as a substrate for the vegetation. The experiments were carried out in duplicate. Water samples were collected at the inflow and outflow of the cells. Two hydraulic retention times (HRT) (5 and 10 days) and three treatments were evaluated: 400, 800, and 1200 mg·L−1 of chemical oxygen demand (COD) concentration. Data was collected in situ for temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), and total dissolved solids (TDS). COD, total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3–N), and total phosphorous (TP) were analyzed in the laboratory. The results showed that the in-series constructed wetland is a feasible system for nutrient pollutant removal, with COD removal efficiency of 76% and 80% mg·L−1 for a 5- and 10-day HRT, respectively. The removal efficiency for TKN, NH3–N, and TP reached about 70% with a 5-day HRT, while a removal of 85% was obtained with a 10-day HRT. The wetland reached the maximum removal efficiency with a 10-day HRT and an inflow load of 400 mg·L−1 of organic matter. The results indicate that HRT positively affects removal efficiency of COD and TDS. On the other hand, the HRT was not the determining factor for TP removal. Treatment one, with an initial COD concentration of 400 mg·L−1, had the highest removal of the assessed pollutants, allowing for the use of water for irrigation according to Mexican regulatory standards (NOM-001). The water quality resulting from treatments two and three (T2 = 800 mg·L−1 of COD and T3 = 1200 mg·L−1 of COD) did not comply with minimal requirements for irrigation water.
Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl−, NO3, SO4, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study.
A Water Quality Index (WQI) is a simple numeric expression reflecting the quality of water in any ecosystem at a given time. The objective of this study was to develop a WQI for the man-made dam Francisco I. Madero located in Chihuahua, Mexico. Eight points were randomly selected in the dam area and at each point water samples were collected monthly from March 2011 to February 2012 at three depths; 0.30 m, 5 m and 10 m. The following physical-chemical variables were measured: potential hydrogen (pH), electrical conductivity (EC), dissolved oxygen (DO), temperature (T), turbidity, total dissolved solids (TDS), total hardness (TH) and chlorides (Cl −). In a first step for data analysis, an analysis of variance (ANOVA) was performed for each variable considering a factorial treatment design 12 × 3 in which factor A was the month with 12 levels (sampling months) and factor B was the depth with three levels (0.30 m, 5 m and 10 m). In a second statistical step, the WQI was calculated for each month only for the surface sampling (0.30 m) and the resulting value was classified under three categories; <2.0 as poor water, in a range of 2.0 to 2.5 as good water and, >2.5 as excellent water. The results showed the following ranges for single variables:
The availability of good quality water resources is essential to ensure healthy crops and livestock. The objective of this study was to evaluate the level of pollution in Bustillos Lagoon in northern Mexico. Physical-chemical parameters like sodium, chloride, sulfate, electrical conductivity, nitrates, and the pesticide dichlorodiphenyltrichloroethane (DDT) were analyzed to determine the water quality available in the lagoon. Although DDT has been banned in several countries, it is still used for agricultural purposes in Mexico and its presence in this area had not been analyzed previously. Bustillos Lagoon was divided into three zones for the evaluation: (1) industrial; (2) communal lands; and (3) agricultural. The highest concentrations of sodium (2360 mg/L) and SAR (41 meq/L) reported in the industrial zone are values exceeding the United Nations Food and Agricultural Organization (FAO) irrigation water quality guidelines. DDT and its metabolites were detected in all of the 21 sites analyzed, in the agricultural zone ∑DDTs = 2804 ng/mL, this level is much higher than those reported for other water bodies in Mexico and around the world where DDT has been used heavily. The water in the communal zone is the least contaminated, but can only be recommended for irrigation of plants with high stress tolerance and not for crops.
Radon (222Rn) is an odorless and tasteless gas that is known to cause lung cancer. The objective of this research was to quantify the levels of exposure to radon among people living in an environment rich in uranium (U). Radon concentrations were measured for 3 days in 12 homes in Aldama, Mexico. Homeowners agreed to participate in the study; hence, the sample was non-probabilistic. Radon was measured with a portable AlphaGuard Radon Monitor (Genicron Instruments GmbH), which was placed in a bedroom of each home at a height of 0.74 m. Gas levels were registered in Becquerels (Bq m−3), with readings taken every 10 min along with readings of ambient temperature (AT), air pressure (AP), and relative humidity (RH). We found that radon gas levels in Aldama exceed the maximum permissible limits (USA: 148 Bq m−3). Levels were higher at night, and were above the maximum permissible level recommended by the International Atomic Energy Agency of the United Nations (<200 Bq m−3). Most residents in the area have family histories of lung problems, but it was difficult to establish a strong correlation between 222Rn and lung cancer. Federal, state, and municipal governments should take stronger action to reduce the effects of radon gas on communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.