Including defects in a ribbon-shaped nanographene leads to a new combination of optical properties: TPA-based upconversion and CPL.
Evolved stars are a foundry of chemical complexity, gas and dust that provides the building blocks of planets and life, and dust nucleation first occurs in their photosphere. Despite their importance, the circumstellar regions enveloping these stars remain hidden to many observations, thus dust formation processes are still poorly understood. Laboratory astrophysics provides complementary routes to unveil these chemical processes, but most experiments rely on combustion or plasma Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Aims. We present the novel InterStellar Astrochemistry Chamber (ISAC), designed for studying solids (ice mantles, organics, and silicates) in interstellar and circumstellar environments: characterizing their physico-chemical properties and monitoring their evolution as caused by (i) vacuum-UV irradiation; (ii) cosmic ray irradiation; and (iii) thermal processing. Experimental study of thermal and photodesorption of the CO ice reported here simulates the freeze-out and desorption of CO on grains, providing new information on these processes. Methods. ISAC is an UHV set-up, with base pressure down to P = 2.5 × 10 −11 mbar, where an ice layer is deposited at 7 K and can be UV-irradiated. The evolution of the solid sample was monitored by in situ transmittance FTIR spectroscopy, while the volatile species were monitored by QMS. Results. The UHV conditions of ISAC allow experiments under extremely clean conditions. Transmittance FTIR spectroscopy coupled to QMS proved to be ideal for in situ monitoring of ice processes that include radiation and thermal annealing. Thermal desorption of CO starting at 15 K, induced by the release of H 2 from the CO ice, was observed. We measured the photodesorption yield of CO ice per incident photon at 7, 8, and 15 K, respectively yielding 6.4 ± 0.5 × 10 −2 , 5.4 ± 0.5 × 10 −2 , and 3.5 ± 0.5 × 10 −2 CO molecules photon (7.3-10.5 eV) −1 . Our value of the photodesorption yield of CO ice at 15 K is about one order of magnitude higher than the previous estimate. We confirmed that the photodesorption yield is constant during irradiation and independent of the ice thickness. Only below ∼5 monolayers ice thickness the photodesorption rate decreases, which suggests that only the UV photons absorbed in the top 5 monolayers led to photodesorption. The measured CO photodesorption quantum yield at 7 K per absorbed photon in the top 5 monolayers is 3.4 molecules photon −1 . Conclusions. Experimental values were used as input for a simple model of a quiescent cloud interior. Photodesorption seems to explain the observations of CO in the gas phase for densities below 3-7 ×10 4 cm −3 . For the same density of a cloud, 3 × 10 4 cm −3 , thermal desorption of CO is not triggered until T = 14.5 K. This has important implications for CO ice mantle build up in dark clouds.
We have studied the first stages leading to the formation of self-assembled monolayers of S-cysteine molecules adsorbed on a Au(111) surface. Density functional theory (DFT) calculations for the adsorption of individual cysteine molecules on Au(111) at room temperature show low-energy barriers all over the 2D Au(111) unit cell. As a consequence, cysteine molecules diffuse freely on the Au(111) surface and they can be regarded as a 2D molecular gas. The balance between molecule-molecule and molecule-substrate interactions induces molecular condensation and evaporation from the morphological surface structures (steps, reconstruction edges, etc.) as revealed by scanning tunnelling microscopy (STM) images. These processes lead progressively to the formation of a number of stable arrangements, not previously reported, such as single-molecular rows, trimers, and 2D islands. The condensation of these structures is driven by the aggregation of new molecules, stabilized by the formation of electrostatic interactions between adjacent NH(3)(+) and COO(-) groups, together with adsorption at a slightly more favorable quasi-top site of the herringbone Au reconstruction.
The increasing demand for nanostructured materials is mainly motivated by their key role in a wide variety of technologically relevant fields such as biomedicine, green sustainable energy or catalysis. We have succeeded to scale-up a type of gas aggregation source, called a multiple ion cluster source, for the generation of complex, ultra-pure nanoparticles made of different materials. The high production rates achieved (tens of g/day) for this kind of gas aggregation sources, and the inherent ability to control the structure of the nanoparticles in a controlled environment, make this equipment appealing for industrial purposes, a highly coveted aspect since the introduction of this type of sources. Furthermore, our innovative UHV experimental station also includes in-flight manipulation and processing capabilities by annealing, acceleration, or interaction with background gases along with in-situ characterization of the clusters and nanoparticles fabricated. As an example to demonstrate some of the capabilities of this new equipment, herein we present the fabrication of copper nanoparticles and their processing, including the controlled oxidation (from Cu0 to CuO through Cu2O, and their mixtures) at different stages in the machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.