With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.
Reactive oxygen and nitrogen species (ROS and RNS) produced by macrophages are essential for protecting a human body against bacteria and viruses. Micrometer-sized electrodes coated with Pt black have previously been used for selective and sensitive detection of ROS and RNS in biological systems. To determine ROS and RNS inside macrophages, one needs smaller (i.e., nanometer-sized) sensors. In this article, the methodologies have been extended to the fabrication and characterization of Pt/Pt black nanoelectrodes. Electrodes with the metal surface flush with glass insulator, most suitable for quantitative voltammetric experiments, were fabricated by electrodeposition of Pt black inside an etched nanocavity under the atomic force microscope control. Despite a nanometerscale radius, the true surface area of Pt electrodes was sufficiently large to yield stable and reproducible responses to ROS and RNS in vitro. The prepared nanoprobes were used to penetrate cells and detect ROS and RNS inside macrophages. Weak and very short leaks of ROS/RNS from the vacuoles into the cytoplasm were detected, which a macrophage is equipped to clean within a couple of seconds, while higher intensity oxidative bursts due to the emptying of vacuoles outside persist on the time scale of tens of seconds.amperometry | atomic force microscopy | oxidative stress | electrochemical nanofabrication | intracellular sensor M acrophage cells are essential for the performance of the immune system. Their activation, either under normal biological conditions or by specific biochemical activators in vitro, results in the production of reactive oxygen and nitrogen species (ROS and RNS) and creation of a large number of vacuoles (phagosomes and phagolysosomes; see Fig. 1A and SI Appendix) (1-3). These vacuoles play an important role in phagocytosisa mechanism used by the immune system to remove pathogens and cell debris. A cell (or debris) is engulfed into a vacuole and subjected to an intense oxidative burst (2), and the indigestible debris and excess ROS and RNS are subsequently evacuated from the macrophage (Fig. 1B).The changes in oxygen and hydrogen peroxide concentrations during the oxidative burst of a stimulated macrophage cell were detected previously using the scanning electrochemical microscope (4). Extensive studies with amperometric microelectrodes positioned in the cell proximity showed that the basal release is due to a cocktail composed of several ROS and RNS evolving from the primary production of O 2•− and NO (5-8). However, the concept that ROS and RNS released inside phagolysosomes may diffuse across the vacuole membrane and leak in the cell cytoplasm remains controversial (9-12). In fact, NO and the transisomer of protonated peroxynitrite ion are capable of crossing biological membranes due to their lipophilicity (13,14). This underscores the importance of probing for the intracellular presence of ROS and RNS in activated macrophages.For electrochemical measurements inside an activated macrophage one needs nanometer-sized electrode...
The disk-type, polished Au nanoelectrodes were prepared, characterized, and used as tips in the scanning electrochemical microscope (SECM). Kinetic parameters were measured for several rapid heterogeneous electron transfer (ET) reactions and compared to those obtained previously at Pt nanoelectrodes. The kinetics of most investigated ET processes were found to be independent of the electrode material. In contrast to the previously reported results, the rate constant of hexaammineruthenium(III) reduction was somewhat higher at Pt than at Au electrodes in different electrolyte solutions. This finding suggests that this reaction exhibits some degree of nonadiabaticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.