Low-mass "dwarf" galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group (LG) of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present first results from the Latte Project: the Milky Way on FIRE (Feedback in Realistic Environments). This simulation models the formation of a MW-mass galaxy to z = 0 within ΛCDM cosmology, including dark matter, gas, and stars at unprecedented resolution: baryon particle mass of 7070 M with gas kernel/softening that adapts down to 1 pc (with a median of 25 − 60 pc at z = 0). Latte was simulated using the GIZMO code with a mesh-free method for accurate hydrodynamics and the FIRE-2 model for star formation and explicit feedback within a multi-phase interstellar medium. For the first time, Latte self-consistently resolves the spatial scales corresponding to half-light radii of dwarf galaxies that form around a MW-mass host down to M star 10 5 M . Latte's population of dwarf galaxies agrees with the LG across a broad range of properties: (1) distributions of stellar masses and stellar velocity dispersions (dynamical masses), including their joint relation; (2) the mass-metallicity relation; and (3) a diverse range of star-formation histories, including their mass dependence. Thus, Latte produces a realistic population of dwarf galaxies at M star 10 5 M that does not suffer from the "missing satellites" or "too big to fail" problems of small-scale structure formation. We conclude that baryonic physics can reconcile observed dwarf galaxies with standard ΛCDM cosmology.
This paper describes the open-source code Enzo, which uses block-structured adaptive mesh refinement to provide high spatial and temporal resolution for modeling astrophysical fluid flows. The code is Cartesian, can be run in 1, 2, and 3 dimensions, and supports a wide variety of physics including hydrodynamics, ideal and non-ideal magnetohydrodynamics, N-body dynamics (and, more broadly, self-gravity of fluids and particles), primordial gas chemistry, optically-thin radiative cooling of primordial and metal-enriched plasmas (as well as some optically-thick cooling models), radiation transport, cosmological expansion, and models for star formation and feedback in a cosmological context. In addition to explaining the algorithms implemented, we present solutions for a wide range of test problems, demonstrate the code's parallel performance, and discuss the Enzo collaboration's code development methodology.
We introduce the AGORA project, a comprehensive numerical study of well-resolved galaxies within the ΛCDM cosmology. Cosmological hydrodynamic simulations with force resolutions of ∼ 100 proper pc or better will be run with a variety of code platforms to follow the hierarchical growth, star formation history, morphological transformation, and the cycle of baryons in and out of 8 galaxies with halo masses M vir ≃ 10 10 , 10 11 , 10 12 , and 10 13 M ⊙ at z = 0 and two different ("violent" and "quiescent") assembly histories. The numerical techniques and implementations used in this project include the smoothed particle hydrodynamics codes GADGET and GASOLINE, and the adaptive mesh refinement codes ART, ENZO, and RAMSES. The codes will share common initial conditions and common astrophysics packages including UV background, metaldependent radiative cooling, metal and energy yields of supernovae, and stellar initial mass function. These are described in detail in the present paper. Subgrid star formation and feedback prescriptions will be tuned to provide a realistic interstellar and circumgalactic medium using a non-cosmological disk galaxy simulation. Cosmological runs will be systematically compared with each other using a common analysis toolkit, and validated against observations to verify that the solutions are robust -i.e., that the astrophysical assumptions are responsible for any success, rather than artifacts of particular implementations. The goals of the AGORA project are, broadly speaking, to raise the realism and predictive power of galaxy simulations and the understanding of the feedback processes that regulate galaxy "metabolism." The initial conditions for the AGORA galaxies as well as simulation outputs at various epochs will be made publicly available to the community. The proof-ofconcept dark matter-only test of the formation of a galactic halo with a z = 0 mass of M vir ≃ 1.7 × 10 11 M ⊙ by 9 different versions of the participating codes is also presented to validate the infrastructure of the project. The project website is http://www.AGORAsimulations.org/. Need for High-Resolution Galaxy SimulationAs the above discussion should make clear, the success of cosmological galaxy formation simulations in producing real- 30 The force softening of the Aquila GASOLINE simulation was 460 proper pc from z = 9 to z = 0, and the mass per dark matter and gas particle was 2.1 and 0.5 × 10 6 M ⊙ , respectively. The Eris simulation had the force softening of 120 proper pc from z = 9 to z = 0, and better mass per dark matter and gas particle of 9.8 and 2.0 × 10 4 M ⊙ , respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.