BiRyuChe-bang (BRC) is a Korean prescription medicine, which has been used to treat allergic rhinitis at Kyung Hee Medical Center. In this work, we investigated the effects of BRC on mast cell-mediated allergic reactions and inflammatory cytokines production, and identified the active component of BRC. Histamine release was measured from rat peritoneal mast cells (RPMCs). Ear swelling and passive cutaneous anaphylaxis (PCA) were examined in mouse models. Phorbol 12-myristate 13-acetate (PMA) plus A23187-induced inflammatory cytokines production was measured using enzyme-linked immunosorbent assay. Reverse transcriptase-polymerase chain reaction was used for the expressions of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8. Activation of nuclear factor (NF)-κB was analyzed by Western blotting. BRC significantly inhibited the compound 48/80-induced ear swelling response, histamine release from RPMCs, PCA activated by anti-dinitrophenyl IgE, and PMA plus A23187-induced inflammatory cytokines production (p < 0.05). In addition, BRC dose-dependently inhibited the mRNA expressions of TNF-α, IL-6, and IL-8 as well as the activation of NF-κB in a human mast cell line, HMC-1 cells. BRC inhibited the levels of TNF-α and IL-6 in mice induced with PCA. Several components of BRC, such as 1,8-Cineole, Linalool, Linalyl acetate, α-Pinene, and α-Terpineol, significantly inhibited the release of histamine from RPMCs (p < 0.05). Among these components, Linalyl acetate was the most effective for inhibiting histamine release. These results indicate that BRC has a potential regulatory effect on allergic and inflammatory reactions mediated by mast cells.
Hyperoside (HYP) is the principle active component of Crataegus pinnatifida. Thymic stromal lymphopoietin (TSLP) plays a vital role in the pathogenesis of allergic reactions. Here, we investigated how HYP regulates the levels of TSLP in a human mast cell line, HMC-1 cells. We analyzed the levels of TSLP by treatment with HYP in phorbol myristate acetate plus calcium ionophore A23187-stimulated HMC-1 cells with ELISA and a polymerase chain reaction analysis. We also analyzed the pathway that HYP regulates TSLP by measuring the level of fluorescent intracellular calcium and using a Western blot analysis. HYP decreased the level of intracellular calcium in stimulated HMC-1 cells. It also significantly decreased the production and mRNA expression of TSLP in stimulated HMC-1 cells. It significantly decreased the levels of receptor-interacting protein 2 and active caspase-1 in stimulated HMC-1 cells. HYP significantly decreased the translocation of NF-κB into the nucleus and degradation of IκBα in the cytoplasm in stimulated HMC-1 cells. Furthermore, it significantly decreased the production and mRNA expression of interleukin-1β and interleukin-6 in stimulated HMC-1 cells. Taken together, our findings establish HYP as a potential agent for the treatment of allergic reactions.
Ikwi-tang (IW) is an oriental medicine that has been used for the treatment of general symptoms due to a stomach yin deficiency. The aim of this study is to investigate precisely the effect of IW on allergic rhinitis (AR). We well show the effects and the mechanism of IW in the ovalbumin-sensitized AR model. IW significantly decreased the number of nasal/ear rubs and the increment of IgE levels in the AR mice. The levels of interferon-γ were enhanced while the levels of interleukin (IL)-4 were reduced in the spleen tissue of the IW-administered AR mice. Expressions of IL-1β and cyclooxygenase-2 were inhibited by IW-administration in the nasal mucosa tissues. Infiltration of eosinophils and mast cells was decreased in the IW-administered AR mice. Our results indicate that IW may attenuate the development of AR by the inhibition of caspase-1 activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.