3D medical image registration is of great clinical importance. However, supervised learning methods require a large amount of accurately annotated corresponding control points (or morphing), which are very difficult to obtain. Unsupervised learning methods ease the burden of manual annotation by exploiting unlabeled data without supervision. In this paper, we propose a new unsupervised learning method using convolutional neural networks under an end-to-end framework, Volume Tweening Network (VTN), for 3D medical image registration. We propose three innovative technical components: (1) An end-to-end cascading scheme that resolves large displacement;(2) An efficient integration of affine registration network; and (3) An additional invertibility loss that encourages backward consistency. Experiments demonstrate that our algorithm is 880x faster (or 3.3x faster without GPU acceleration) than traditional optimization-based methods and achieves state-of-theart performance in medical image registration.
We introduce a new technique that allows to give a zeroknowledge proof that a committed vector has Hamming weight bounded by a given constant. The proof has unconditional soundness and is very compact: It has size independent of the length of the committed string, and for large fields, it has size corresponding to a constant number of commitments. We show five applications of the technique that play on a common theme, namely that our proof allows us to get malicious security at small overhead compared to semi-honest security: (1) actively secure k-out-of-n OT from black-box use of 1-out-of-2 OT, (2) separable accountable ring signatures, (3) more efficient preprocessing for the TinyTable secure two-party computation protocol, (4) mixing with public verifiability, and (5) PIR with security against a malicious client.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.