An unusual new phenolic component, triticumoside (1), and eight known compounds, isoorientin (2), isoscoparin (3), (2R)-2-O-β-D-glucopyranosyloxy-4,7-dimethoxy-2H-1,4-benzoxazin-3(4H)-one (4), adenosine (5), β-sitosterol (6), daucosterol (7), 6′-O-linolenoyl daucosterol (8), α-tocopherol (9), were isolated fromTriticum aestivum sprouts. The hybrid structure of 1, which is a hybrid between a flavone and a polyoxygenated benzene, is rarely found in natural sources. In addition, the effects of these compounds on LPS-induced NO and TNF-α production in RAW 264.7 cells were evaluated. At a concentration of 2.0 μM, compounds 2-4 significantly inhibited the production of both NO and TNF-α. Compound 1 exhibited inhibitory activity on the secretion of TNF-α at concentrations as low as 2.0 μM, but it did not reduce NO levels at any of the tested concentrations.
Bioassay-guided fractionation based on the anti-inflammatory activity of a methanol extract of Ficus microcarpa leaves led to the isolation of seven galactolipids: 2(S)-3-O-octadeca-9Z,12Z,15Z-trienoylglyceryl-O-β-D-galactopyranoside (1), (2S)-2,3-O-dioctadeca-9Z,12Z,15Z-trienoylglyceryl-O-β-D-galactopyranoside (2), (2S)-2,3-O-dioctadeca-9Z,12Z-dienoylglyceryl-O-β-D-galactopyranoside (3), (2S)-3-O-octadeca-9Z,12Z,15Z-trienoylglyceryl-6'-O-(α-D-galactopyranosyl)-β-D-galactopyranoside (4), (2S)-2,3-O-dioctadeca-9Z,12Z,15Z-trienoylglyceryl-6'-O-(α-D-galactopyranosyl)-β-D-galactopyranoside (5), gingerglycolipid B (6), and (2S)-2,3-O-dioctadeca-9Z,12Z-dienoylglyceryl-6'-O-(α-D-galactopyranosyl)-β-D-galactopyranoside (7). Their chemical structures were elucidated by mass, 1D-, and 2D-NMR spectroscopic methods as well as chemical methods. The antiinflammatory effect of these compounds on TNF-α induced IL-8 secretion in the HT-29 cell line was evaluated. All above galactolipids showed significant inhibition ranging 40% at a concentration of 50 μM. The results suggest that galactolipids from the leaves of F. microcarpa may be used as potent anti-inflammatory agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.