In this paper, we propose a new framework for hierarchical image segmentation based on iterative contraction and merging. In the proposed framework, we treat the hierarchical image segmentation problem as a sequel of optimization problems, with each optimization process being realized by a contraction-and-merging process to identify and merge the most similar data pairs at the current resolution. At the beginning, we perform pixel-based contraction and merging to quickly combine image pixels into initial region-elements with visually indistinguishable intra-region color difference. After that, we iteratively perform region-based contraction and merging to group adjacent regions into larger ones to progressively form a segmentation dendrogram for hierarchical segmentation. Comparing with the state-of-the-art techniques, the proposed algorithm can not only produce high-quality segmentation results in a more efficient way, but also keep a lot of boundary details in the segmentation results.
Portfolio management involves position sizing and resource allocation. Traditional and generic portfolio strategies require forecasting of future stock prices as model inputs, which is not a trivial task since those values are difficult to obtain in the real-world applications. To overcome the above limitations and provide a better solution for portfolio management, we developed a Portfolio Management System (PMS) using reinforcement learning with two neural networks (CNN and RNN). A novel reward function involving Sharpe ratios is also proposed to evaluate the performance of the developed systems. Experimental results indicate that the PMS with the Sharpe ratio reward function exhibits outstanding performance, increasing return by 39.0% and decreasing drawdown by 13.7% on average compared to the reward function of trading return. In addition, the proposed model is more suitable for the construction of a reinforcement learning portfolio, but has 1.98 times more drawdown risk than the . Among the conducted datasets, the PMS outperforms the benchmark strategies in TW50 and traditional stocks, but is inferior to a benchmark strategy in the financial dataset. The PMS is profitable, effective, and offers lower investment risk among almost all datasets. The novel reward function involving the Sharpe ratio enhances performance, and well supports resource-allocation for empirical stock trading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.