In this paper, we propose a new framework for hierarchical image segmentation based on iterative contraction and merging. In the proposed framework, we treat the hierarchical image segmentation problem as a sequel of optimization problems, with each optimization process being realized by a contraction-and-merging process to identify and merge the most similar data pairs at the current resolution. At the beginning, we perform pixel-based contraction and merging to quickly combine image pixels into initial region-elements with visually indistinguishable intra-region color difference. After that, we iteratively perform region-based contraction and merging to group adjacent regions into larger ones to progressively form a segmentation dendrogram for hierarchical segmentation. Comparing with the state-of-the-art techniques, the proposed algorithm can not only produce high-quality segmentation results in a more efficient way, but also keep a lot of boundary details in the segmentation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.